Glenoid segmentation from computed tomography scans based on a 2-stage deep learning model for glenoid bone loss evaluation

医学 关节盂腔 畸形 分割 人工智能 射线照相术 核医学 放射科 口腔正畸科 肩关节 外科 计算机科学
作者
Qingqing Zhao,Quanlong Feng,Jianlun Zhang,Jingxu Xu,Zifeng Wu,Chencui Huang,Huishu Yuan
出处
期刊:Journal of Shoulder and Elbow Surgery [Elsevier BV]
卷期号:32 (12): e624-e635 被引量:5
标识
DOI:10.1016/j.jse.2023.05.006
摘要

The best-fitting circle drawn by computed tomography (CT) reconstruction of the en face view of the glenoid bone to measure the bone defect is widely used in clinical application. However, there are still some limitations in practical application, which can prevent the achievement of accurate measurements. This study aimed to accurately and automatically segment the glenoid from CT scans based on a 2-stage deep learning model and to quantitatively measure the glenoid bone defect.Patients who were referred to our institution between June 2018 and February 2022 were retrospectively reviewed. The dislocation group consisted of 237 patients with a history of ≥2 unilateral shoulder dislocations within 2 years. The control group consisted of 248 individuals with no history of shoulder dislocation, shoulder developmental deformity, or other disease that may lead to abnormal morphology of the glenoid. All patients underwent CT examination with a 1-mm slice thickness and a 1-mm increment, including complete imaging of the bilateral glenoid. A residual neural network (ResNet) location model and a U-Net bone segmentation model were constructed to develop an automated segmentation model for the glenoid from CT scans. The data set was randomly divided into training (201 of 248) and test (47 of 248) data sets of control-group data and training (190 of 237) and test (47 of 237) data sets of dislocation-group data. The accuracy of the stage 1 (glenoid location) model, the mean intersection-over-union value of the stage 2 (glenoid segmentation) model, and the glenoid volume error were used to assess the performance of the model. The R2 value and Lin concordance correlation coefficient were used to assess the correlation between the prediction and the gold standard.A total of 73,805 images were obtained after the labeling process, and each image was composed of CT images of the glenoid and its corresponding mask. The average overall accuracy of stage 1 was 99.28%; the average mean intersection-over-union value of stage 2 was 0.96. The average glenoid volume error between the predicted and true values was 9.33%. The R2 values of the predicted and true values of glenoid volume and glenoid bone loss (GBL) were 0.87 and 0.91, respectively. The Lin concordance correlation coefficient value of the predicted and true values of glenoid volume and GBL were 0.93 and 0.95, respectively.The 2-stage model in this study showed a good performance in glenoid bone segmentation from CT scans and could quantitatively measure GBL, providing a data reference for subsequent clinical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cjsgdsb完成签到,获得积分10
2秒前
Rita发布了新的文献求助30
4秒前
10秒前
automan发布了新的文献求助10
10秒前
不会取名字完成签到,获得积分10
10秒前
14秒前
喜欢秋天xx_y应助eh采纳,获得20
14秒前
automan完成签到,获得积分10
17秒前
HHH完成签到,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
zxb发布了新的文献求助10
21秒前
传奇3应助CBY采纳,获得10
22秒前
23秒前
深情安青应助项目多多采纳,获得10
24秒前
mashichuang发布了新的文献求助10
24秒前
25秒前
马儿爱乱跑完成签到,获得积分10
25秒前
程瑞哲发布了新的文献求助10
28秒前
可爱的函函应助HL采纳,获得10
29秒前
30秒前
aldehyde应助昏睡的元芹采纳,获得10
32秒前
CBY发布了新的文献求助10
34秒前
35秒前
雨声完成签到,获得积分10
38秒前
领导范儿应助gfrdm采纳,获得30
41秒前
帅气香芦发布了新的文献求助10
41秒前
hx发布了新的文献求助10
42秒前
superp完成签到,获得积分10
43秒前
43秒前
48秒前
项目多多发布了新的文献求助10
48秒前
aldehyde应助韩凡采纳,获得10
48秒前
jack发布了新的文献求助10
48秒前
量子星尘发布了新的文献求助10
49秒前
山羊8201完成签到,获得积分10
49秒前
49秒前
50秒前
50秒前
53秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881272
求助须知:如何正确求助?哪些是违规求助? 3423709
关于积分的说明 10735518
捐赠科研通 3148649
什么是DOI,文献DOI怎么找? 1737298
邀请新用户注册赠送积分活动 838799
科研通“疑难数据库(出版商)”最低求助积分说明 784087