Abstract 11780: Machine Learning Models to Predict Development of CKD and/or HF in Early Stages of Type 2 Diabetes Patients

医学 肾脏疾病 逻辑回归 比例危险模型 糖尿病 内科学 重症监护医学 心力衰竭 内分泌学
作者
Hiroo Tsubota,Toshitaka Yajima,Eiichiro Kanda,Satomi Kanemata,Atsushi Suzuki,Koichi Shirakawa,Masaki Miyamoto
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:146 (Suppl_1)
标识
DOI:10.1161/circ.146.suppl_1.11780
摘要

Chronic kidney disease and/or heart failure (CKD/HF) are the first and most frequent comorbidities that are associated with adverse prognosis in early stages of type 2 diabetes (T2DM) patients. However, efficient screening and risk assessment strategies for the development of CKD/HF remain to be established. We aimed to develop novel machine learning models that can predict the risk of CKD/HF manifestation as well as prognosis in early stages of T2DM patients without a history of CKD or cardiovascular diseases (CVDs). Prediction models were developed with extreme gradient boosting machine (XGB), neural network, logistic regression (LR), and Cox proportional hazards using real-world data of T2DM patients aged ≥18 years without a history of CKD or CVDs (n=217,054) extracted from a Japanese hospital-based administrative claim database. A separate dataset of 16,822 patients from another Japanese database was used for external validation. The outcomes used to construct the models were diagnosis of CKD/HF, hospitalization for CKD/HF and all-cause death during a 5 -year follow-up period. AUROC of XGB and LR for each outcome were as follows. Diagnosis of CKD/HF: 0.777 (XGB); 0.732 (LR), Hospitalization for CKD/HF: 0.785 (XGB); 0.767 (LR), All-cause death: 0.918(XGB) and 0.903(LR). The best-performing XGB models were externally validated; AUROC for diagnosis of CKD/HF , hospitalization for CKD/HF and all-cause death were 0.718 , 0.837 and 0.869 respectively. Furthermore, the Kaplan-Meier curves showed that for both outcomes, the hazard ratio of event-free survival in the group predicted as high-risk and low-risk in the XGB model was statistically significant (Figure). These results demonstrated successful construction of prediction model and using an administrative hospital database and suggest that our model may contribute to early diagnosis and intervention of CKD/HF among early stages of T2DM patients and ultimately improving prognosis of the patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
去吧海燕发布了新的文献求助30
刚刚
1秒前
DF完成签到 ,获得积分10
2秒前
botanist完成签到 ,获得积分10
4秒前
考研小白完成签到,获得积分10
6秒前
6秒前
6秒前
小成完成签到 ,获得积分10
7秒前
zhangjiabin发布了新的文献求助10
7秒前
7秒前
科研通AI5应助POKKKK采纳,获得10
10秒前
11秒前
bi8bo发布了新的文献求助10
11秒前
哈哈关注了科研通微信公众号
15秒前
16秒前
西海岸的风完成签到 ,获得积分10
16秒前
XIAOJU_U完成签到 ,获得积分10
17秒前
CCY完成签到,获得积分10
19秒前
19秒前
123完成签到,获得积分10
19秒前
bi8bo完成签到,获得积分10
20秒前
21秒前
21秒前
Qq发布了新的文献求助20
23秒前
居易发布了新的文献求助10
24秒前
领导范儿应助爱笑雨双采纳,获得10
25秒前
25秒前
咕咕发布了新的文献求助10
26秒前
郑旭辉发布了新的文献求助10
27秒前
张星宇关注了科研通微信公众号
27秒前
酷炫的红牛完成签到,获得积分10
27秒前
fsznc完成签到 ,获得积分0
29秒前
30秒前
刘双发布了新的文献求助10
30秒前
跋山涉水的巫师完成签到,获得积分10
30秒前
上官若男应助lin采纳,获得10
32秒前
汉堡包应助郑旭辉采纳,获得10
34秒前
森鹿发布了新的文献求助50
34秒前
34秒前
爱笑雨双发布了新的文献求助10
36秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803788
求助须知:如何正确求助?哪些是违规求助? 3348592
关于积分的说明 10339483
捐赠科研通 3064770
什么是DOI,文献DOI怎么找? 1682762
邀请新用户注册赠送积分活动 808409
科研通“疑难数据库(出版商)”最低求助积分说明 764096