NSECDA: Natural Semantic Enhancement for CircRNA-Disease Association Prediction

计算机科学 人工智能 分类器(UML) 自然语言处理 随机森林 机器学习 相关性 数据挖掘 数学 几何学
作者
Lei Wang,Leon Wong,Zhu‐Hong You,De-Shuang Huang,Xiao-Rui Su,Bo-Wei Zhao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 5075-5084 被引量:15
标识
DOI:10.1109/jbhi.2022.3199462
摘要

Increasing evidence suggest that circRNA, as one of the most promising emerging biomarkers, has a very close relationship with diseases. Exploring the relationship between circRNA and diseases can provide novel perspective for diseases diagnosis and pathogenesis. The existing circRNA-disease association (CDA) prediction models, however, generally treat the data attributes equally, do not pay special attention to the attributes with more significant influence, and do not make full use of the correlation and symbiosis between attributes to dig into the latent semantic information of the data. Therefore, in response to the above problems, this paper proposes a natural semantic enhancement method NSECDA to predict CDA. In practical terms, we first recognize the circRNA sequence as a biological language, and analyze its natural semantic properties through the natural language understanding theory; then integrate it with disease attributes, circRNA and disease Gaussian Interaction Profile (GIP) kernel attributes, and use Graph Attention Network (GAT) to focus on the influential attributes, so as to mine the deeply hidden features; finally, the Rotation Forest (RoF) classifier was used to accurately determine CDA. In the gold standard data set CircR2Disease, NSECDA achieved 92.49% accuracy with 0.9225 AUC score. In comparison with the non-natural semantic enhancement model and other classifier models, NSECDA also shows competitive performance. Additionally, 25 of the CDA pairs with unknown associations in the top 30 prediction scores of NSECDA have been proven by newly reported studies. These achievements suggest that NSECDA is an effective model to predict CDA, which can provide credible candidate for subsequent wet experiments, thus significantly reducing the scope of investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
欣喜面包完成签到,获得积分10
3秒前
5秒前
8秒前
9秒前
今后应助归海凡儿采纳,获得10
10秒前
cloud发布了新的文献求助10
10秒前
12秒前
Akim应助辛L采纳,获得10
13秒前
14秒前
爆米花应助cloud采纳,获得10
16秒前
Sophiaye完成签到,获得积分10
18秒前
xqq发布了新的文献求助10
19秒前
Philwen发布了新的文献求助10
20秒前
21秒前
小蘑菇应助豆豆欢欢乐采纳,获得10
22秒前
22秒前
hxxx发布了新的文献求助10
23秒前
24秒前
25秒前
大胆绮兰发布了新的文献求助10
26秒前
Vv完成签到,获得积分20
27秒前
CXSCXD发布了新的文献求助10
28秒前
忧伤的书白完成签到,获得积分10
29秒前
春申君完成签到 ,获得积分10
29秒前
冷酷瑾瑜发布了新的文献求助10
30秒前
aaaaaaaaya完成签到 ,获得积分10
30秒前
Johnny完成签到,获得积分10
31秒前
31秒前
Philwen完成签到,获得积分10
31秒前
wsw111发布了新的文献求助10
32秒前
Ava应助hxxx采纳,获得10
32秒前
上官若男应助我是灭宝采纳,获得30
33秒前
35秒前
35秒前
37秒前
传奇3应助ZSY采纳,获得10
37秒前
39秒前
孙建波完成签到,获得积分20
39秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4096566
求助须知:如何正确求助?哪些是违规求助? 3634404
关于积分的说明 11520887
捐赠科研通 3345042
什么是DOI,文献DOI怎么找? 1838382
邀请新用户注册赠送积分活动 905944
科研通“疑难数据库(出版商)”最低求助积分说明 823409