The alterations of brain functional connectivity networks in major depressive disorder detected by machine learning through multisite rs-fMRI data

支持向量机 特征选择 功能磁共振成像 重性抑郁障碍 人工智能 交叉验证 样本量测定 机器学习 模式识别(心理学) 特征(语言学) 功能连接 计算机科学 心理学 心情 统计 临床心理学 神经科学 数学 哲学 语言学
作者
Peishan Dai,Tong Xiong,Xiaoyan Zhou,Yilin Ou,Yang Li,Xiaoyan Kui,Zailiang Chen,Beiji Zou,Weihui Li,Zhongchao Huang,the REST-meta-MDD Consortium
出处
期刊:Behavioural Brain Research [Elsevier BV]
卷期号:435: 114058-114058 被引量:19
标识
DOI:10.1016/j.bbr.2022.114058
摘要

The current diagnosis of major depressive disorder (MDD) is mainly based on the patient's self-report and clinical symptoms. Machine learning methods are used to identify MDD using resting-state functional magnetic resonance imaging (rs-fMRI) data. However, due to large site differences in multisite rs-fMRI data and the difficulty of sample collection, most of the current machine learning studies use small sample sizes of rs-fMRI datasets to detect the alterations of functional connectivity (FC) or network attribute (NA), which may affect the reliability of the experimental results. Multisite rs-fMRI data were used to increase the size of the sample, and then we extracted the functional connectivity (FC) and network attribute (NA) features from 1611 rs-fMRI data (832 patients with MDD (MDDs) and 779 healthy controls (HCs)). ComBat algorithm was used to harmonize the data variances caused by the multisite effect, and multivariate linear regression was used to remove age and sex covariates. Two-sample t-test and wrapper-based feature selection methods (support vector machine recursive feature elimination with cross-validation (SVM-RFECV) and LightGBM's "feature_importances_" function) were used to select important features. The Shapley additive explanations (SHAP) method was used to assign the contribution of features to the best classification effect model. The best result was obtained from the LinearSVM model trained with the 136 important features selected by SVMRFE-CV. In the nested five-fold cross-validation (consisting of an outer and an inner loop of five-fold cross-validation) of 1611 data, the model achieved the accuracy, sensitivity, and specificity of 68.90 %, 71.75 %, and 65.84 %, respectively. The 136 important features were tested in a small dataset and obtained excellent classification results after balancing the ratio between patients with depression and HCs. The combined use of FC and NA features is effective for classifying MDDs and HCs. The important FC and NA features extracted from the large sample dataset have some generalization performance and may be used as a reference for the altered brain functional connectivity networks in MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dora发布了新的文献求助10
刚刚
cc完成签到,获得积分10
刚刚
1秒前
脑洞疼应助冷山采纳,获得10
1秒前
kyt完成签到 ,获得积分10
1秒前
1秒前
夏汐完成签到,获得积分10
2秒前
浪客完成签到 ,获得积分10
2秒前
3秒前
难过的蘑菇完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
Drew完成签到,获得积分10
5秒前
万能图书馆应助zzz采纳,获得10
5秒前
水月发布了新的文献求助10
6秒前
雪白水池完成签到,获得积分10
7秒前
木木发布了新的文献求助10
7秒前
希望天下0贩的0应助wxq采纳,获得10
7秒前
恋阙谙发布了新的文献求助10
8秒前
小铃铛发布了新的文献求助10
8秒前
英俊的铭应助喵喵喵采纳,获得10
9秒前
共享精神应助南宫誉采纳,获得10
9秒前
火星上的汲完成签到 ,获得积分10
9秒前
奔流的河发布了新的文献求助10
9秒前
will完成签到,获得积分10
10秒前
烟花应助onepiece采纳,获得10
10秒前
南巷完成签到,获得积分10
11秒前
星辰大海应助嘚嘚采纳,获得10
11秒前
七七完成签到,获得积分10
13秒前
13秒前
13秒前
慕青应助thuuu采纳,获得10
14秒前
不安平凡应助汩汩采纳,获得10
15秒前
夏菡完成签到,获得积分10
16秒前
月月发布了新的文献求助10
16秒前
17秒前
田様应助yuyu采纳,获得10
17秒前
阿咚发布了新的文献求助10
17秒前
奔流的河发布了新的文献求助10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358921
关于积分的说明 10398088
捐赠科研通 3076295
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813229
科研通“疑难数据库(出版商)”最低求助积分说明 767599