[Construction and evaluation of an artificial intelligence-based risk prediction model for death in patients with nasopharyngeal cancer].

接收机工作特性 鼻咽癌 医学 随机森林 人工智能 决策树 机器学习 阶段(地层学) 统计 内科学 肿瘤科 计算机科学 数学 放射治疗 生物 古生物学
作者
H Zhang,Jin Lü,Chaoyang Jiang,Min Fang
出处
期刊:PubMed 卷期号:43 (2): 271-279 被引量:1
标识
DOI:10.12122/j.issn.1673-4254.2023.02.16
摘要

To screen the risk factors for death in patients with nasopharyngeal carcinoma (NPC) using artificial intelligence (AI) technology and establish a risk prediction model.The clinical data of NPC patients obtained from SEER database (1973-2015). The patients were randomly divided into model building and verification group at a 7∶3 ratio. Based on the data in the model building group, R software was used to identify the risk factors for death in NPC patients using 4 AI algorithms, namely eXtreme Gradient Boosting (XGBoost), Decision Tree (DT), Least absolute shrinkage and selection operator (LASSO) and random forest (RF), and a risk prediction model was constructed based on the risk factor identified. The C-Index, decision curve analysis (DCA), receiver operating characteristic (ROC) curve and calibration curve (CC) were used for internal validation of the model; the data in the validation group and clinical data of 96 NPC patients (collected from First Affiliated Hospital of Bengbu Medical College) were used for internal and external validation of the model.The clinical data of a total of 2116 NPC patients were included (1484 in model building group and 632 in verification group). Risk factor screening showed that age, race, gender, stage M, stage T, and stage N were all risk factors of death in NPC patients. The risk prediction model for NPC-related death constructed based on these factors had a C-index of 0.76 for internal evaluation, an AUC of 0.74 and a net benefit rate of DCA of 9%-93%. The C-index of the model in internal verification was 0.740 with an AUC of 0.749 and a net benefit rate of DCA of 3%-89%, suggesting a high consistency of the two calibration curves. In external verification, the C-index of this model was 0.943 with a net benefit rate of DCA of 3%-97% and an AUC of 0.851, and the predicted value was consistent with the actual value.Gender, age, race and TNM stage are risk factors of death of NPC patients, and the risk prediction model based on these factors can accurately predict the risks of death in NPC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LIJINGGE发布了新的文献求助10
1秒前
jane完成签到 ,获得积分10
2秒前
漫漫楚威风完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
sss2021发布了新的文献求助10
9秒前
gg发布了新的文献求助10
9秒前
ni完成签到,获得积分10
11秒前
12秒前
小鹿斑比完成签到 ,获得积分10
12秒前
FashionBoy应助迅速凡旋采纳,获得10
13秒前
luminous完成签到,获得积分10
17秒前
香蕉觅云应助秋言采纳,获得10
17秒前
zhaoty完成签到,获得积分10
19秒前
闪闪雅阳发布了新的文献求助10
19秒前
冰墩墩完成签到,获得积分10
22秒前
科研通AI2S应助洁净的钢笔采纳,获得10
23秒前
24秒前
jenningseastera应助Raymond采纳,获得10
24秒前
懒洋洋大王完成签到,获得积分10
24秒前
25秒前
25秒前
JamesPei应助端庄梦桃采纳,获得10
26秒前
zzuzll完成签到,获得积分10
26秒前
传奇3应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
dududu发布了新的文献求助10
28秒前
情怀应助懒洋洋大王采纳,获得10
28秒前
29秒前
迅速凡旋发布了新的文献求助10
29秒前
29秒前
zzz完成签到,获得积分10
30秒前
秋言发布了新的文献求助10
35秒前
SS发布了新的文献求助10
35秒前
Oliver完成签到,获得积分20
35秒前
迅速凡旋完成签到,获得积分10
36秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401