多发性硬化
神经科学
认知障碍
可控性
认知
心理学
医学
精神科
数学
应用数学
作者
Yuping Yang,Anna M. Woollams,Ilona Lipp,Zhizheng Zhuo,Marta Czime Litwińczuk,Valentina Tomassini,Yaou Liu,Nelson J. Trujillo‐Barreto,Nils Muhlert
摘要
Recent research suggests that individuals with multiple sclerosis (MS) and cognitive impairment exhibit more effortful and less efficient transitions in brain network activity. Previous studies further highlight the increased vulnerability of specific regions, particularly the thalamus, to disease-related damage. This study investigates whether MS affects the controllability of specific brain regions in driving network activity transitions across the brain and examines the relationship between these changes and cognitive impairment in patients. Resting-state functional MRI and neuropsychological data were collected from 102 MS and 27 healthy controls. Functional network controllability analysis was performed to quantify how specific regions influence transitions between brain activity patterns or states. Disease alterations in controllability were assessed in the main dataset and then replicated in an independent dataset of 95 MS and 45 healthy controls. Controllability metrics were then used to distinguish MS from healthy controls and predict cognitive status. MS-specific controllability changes were observed in the subcortical network, particularly the thalamus, which were further confirmed in the replication dataset. Cognitively impaired patients showed significantly greater difficulty in the thalamus steering brain transitions towards difficult-to-reach states, which are typically associated with high-energy-cost cognitive functions. Thalamic network controllability proved more effective than thalamic volume in distinguishing MS from healthy controls (AUC = 88.3%), and in predicting cognitive status in MS (AUC = 80.7%). This study builds on previous research highlighting early thalamic damage in MS, aiming to demonstrate how this damage disrupts activity transitions across the cerebrum and may predict cognitive deficits. Our findings suggest that the thalamus in MS becomes less capable of facilitating broader brain activity transitions essential for high-energy-cost cognitive functions, implying a potential pathological mechanism that links thalamic functional changes to cognitive impairment in MS.
科研通智能强力驱动
Strongly Powered by AbleSci AI