格式化
催化作用
苯酚
环己酮
甲酸
氧气
电解质
法拉第效率
吸附
化学
化学工程
无机化学
材料科学
电极
有机化学
物理化学
工程类
作者
Zhiyong Yu,Qing Yao,Wei An,Huaizhong Xu,Jiaqi Su,Juan Wang,Ying Zhang,Huile Jin,Yuliang Feng,Xiaoqing Huang
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2025-08-29
卷期号:11 (35): eady4981-eady4981
标识
DOI:10.1126/sciadv.ady4981
摘要
Electrocatalytic CO 2 reduction (ECR) to formic acid faces challenges in separating and purifying a formate-electrolyte mixture. In situ utilization of this mixture presents a promising yet underexplored solution. Here, we report the synthesis of Bi x Pd 1− x Te nanocrystals (NCs) via a microwave-assisted cation topological exchange approach, enabling the precise tuning of surface oxygen affinities to simultaneously optimize the ECR and catalytic transfer hydrogenation (CTH) of phenol. Optimized Bi 0.1 Pd 0.9 Te NCs achieve a 92% formate Faradaic efficiency at −0.9 volts versus reversible hydrogen electrode and a production rate of 860 millimoles per hour per gram of catalyst at 100 milliamperes per square centimeter. This formate-electrolyte mixture serves as an effective hydrogen donor, enabling 98% selectivity toward cyclohexanone in phenol hydrogenation. Mechanistic studies show uniformly dispersed Bi sites create an oxygen affinity gradient, enhancing *OCHO adsorption for formate production and promoting noncoplanar phenol adsorption for selective cyclohexanone formation. This work pioneers synergistic ECR-CTH integration, establishing an innovative CO 2 valorization and biomass upgrading strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI