Development and validation of deep learning for predicting the growth of ovarian cancer organoids

类有机物 卵巢癌 计算生物学 癌症 计算机科学 肿瘤科 医学 生物 内科学 神经科学
作者
Hongji Wu,Lifang Ma,Ling Wang,Xueping Zhu,Xiaogang Luo,Cong Zhang,Chunfang Ha,Yun Dang,Haixia Wang,Dongling Zou
出处
期刊:Chinese Medical Journal [Lippincott Williams & Wilkins]
标识
DOI:10.1097/cm9.0000000000003575
摘要

Abstract Background: Organoids have attracted enormous interest in disease modeling, drug screening, and precision medicine. However, developing robust patient-derived organoids (PDOs) was time-consuming, costly, and had low success rates for certain cancer types, which limited their clinical utility. This study aimed to develop an interpretable deep learning-based model to predict the cultivation outcome of ovarian cancer organoids in advance. Methods: Longitudinal microscopy images of 517 ovarian cancer organoid droplets were divided into training ( n = 325), validation ( n = 88), and test ( n = 104) sets. Subsequently, growth prediction models were developed based on four neural network backbones (ResNet18, VGG11, ConvNeXt v2, and Swin Transformer v2), and specific optimization methods were designed for better prediction. Finally, 179 samples from multiple centers were collected for prospective validation, and the gradient-weighted class activation mapping (Grad-CAM) method was used for interpretability analysis of the deep model to reveal the basis of the model’s decisions. Results: The test set showed that the deep learning models could achieve high-performance prediction at the third stage with area under the curve (AUC) values greater than 0.8 for all four models. The homogeneous transfer learning optimization method improved the AUC from 0.833 to 0.884 ( P = 0.0039). In prospective validation, the optimized model achieved an AUC of 0.832, a Brier score of 0.1919 in the calibration curve, and a greater net benefit in the decision curve. Interpretability analysis revealed that the area where organoids are being formed and have already formed is important for prediction. Conclusions: Our developed models achieved satisfactory results in predicting the growth of ovarian cancer organoids. There is potential for further development of the model toward process automation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangji_2017完成签到,获得积分10
1秒前
fomo完成签到,获得积分10
1秒前
laber应助科研通管家采纳,获得50
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
淞淞于我完成签到 ,获得积分10
5秒前
jfeng完成签到,获得积分10
6秒前
7秒前
11秒前
小黑猫跑酷完成签到 ,获得积分10
11秒前
木木水完成签到,获得积分10
14秒前
ATOM完成签到,获得积分20
14秒前
干净的人达完成签到 ,获得积分10
15秒前
huaner完成签到,获得积分10
15秒前
徐小锤完成签到 ,获得积分10
17秒前
CLTTTt完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
asjm完成签到 ,获得积分10
21秒前
21秒前
Yang22完成签到,获得积分10
24秒前
Yanping完成签到,获得积分10
25秒前
某只橘猫君完成签到,获得积分10
27秒前
Air云完成签到,获得积分10
30秒前
31秒前
直率的钢铁侠完成签到,获得积分10
31秒前
sdfdzhang完成签到 ,获得积分0
32秒前
等待的代容完成签到,获得积分10
34秒前
35秒前
yy完成签到 ,获得积分10
37秒前
许鸽完成签到,获得积分10
37秒前
调皮从筠完成签到 ,获得积分10
39秒前
能干戎完成签到,获得积分10
41秒前
折柳完成签到 ,获得积分10
44秒前
2316690509完成签到 ,获得积分10
47秒前
47秒前
51秒前
小温温完成签到 ,获得积分10
54秒前
57秒前
lu完成签到,获得积分10
59秒前
malo完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4249906
求助须知:如何正确求助?哪些是违规求助? 3783044
关于积分的说明 11873914
捐赠科研通 3434868
什么是DOI,文献DOI怎么找? 1885102
邀请新用户注册赠送积分活动 936768
科研通“疑难数据库(出版商)”最低求助积分说明 842696