对偶(语法数字)
声动力疗法
机制(生物学)
材料科学
金属有机骨架
构造(python库)
纳米技术
计算机科学
化学
物理
物理化学
量子力学
生物化学
细胞凋亡
吸附
艺术
文学类
程序设计语言
作者
Xiang Jiang,Lina Sun,Yuewu Zhao,Zhiyong Lu,Xuan He,Ying Xiang,Xingzhu Liu,Jine Wang,Renjun Pei
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-07-24
标识
DOI:10.1021/acsnano.5c05276
摘要
Sonodynamic therapy (SDT) has demonstrated promising potential in the treatment of tumors and has attracted widespread attention. The majority of sound-sensitive materials developed to date have been categorized as oxygen-dependent type II sonosensitizers (SSs), which are susceptible to tumor hypoxia and significantly limit their efficacy. In this study, highly active porphyrin-based metal-organic frameworks (Yb-TCPP PMOF) with type I/II SDT dual actions were constructed by regulating the electron transfer process between metal nodes and ligands, which can produce multiple reactive oxygen species (ROS) such as 1O2, O2•-, and •OH. After that, the energy level barrier of triplet SSs was reduced by in situ loading of Au nanoparticles with the electronic grab-transport (EGT) effect, and the ROS yield was increased by accelerating the electron transport. Intriguingly, the successful construction of Au/Yb-TCPP not only produced abundant oxygen vacancy defects but also reduced the band gap, which effectively facilitated the electron-hole separation of SSs and further improved the SDT efficiency by inhibiting its recombination process. Furthermore, we also found that these ultrasmall Au nanoparticles in the MOF structure can act as catalase and undergo cascade reactions with glucose oxidase and obtain a self-producing oxygen circulation system (Au/Yb-TCPP@GOx) by reducing glucose through the coordination of nanoenzyme and bioenzyme. This not only significantly alleviates the hypoxia state of tumors but also has a starvation effect on tumor cells. Finally, it was verified at the levels of tumor cells and mice that Au/Yb-TCPP@GOx can effectively inhibit tumors through the dual effects of enhanced type I and type II SDT, as well as the starvation effect. The composite materials constructed showed a multisynergistic enhancement effect, which has guiding significance for improving electron transport, alleviating tumor hypoxia, enhancing ROS yield, and constructing starvation treatment strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI