计算机科学
计算生物学
机器学习
人工智能
简单(哲学)
摄动(天文学)
深度学习
基因
生物
遗传学
物理
哲学
认识论
量子力学
作者
Constantin Ahlmann-Eltze,Wolfgang Huber,Simon Anders
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2025-08-01
卷期号:22 (8): 1657-1661
标识
DOI:10.1038/s41592-025-02772-6
摘要
Recent research in deep-learning-based foundation models promises to learn representations of single-cell data that enable prediction of the effects of genetic perturbations. Here we compared five foundation models and two other deep learning models against deliberately simple baselines for predicting transcriptome changes after single or double perturbations. None outperformed the baselines, which highlights the importance of critical benchmarking in directing and evaluating method development.
科研通智能强力驱动
Strongly Powered by AbleSci AI