Exploration of Fully‐Automated Body Composition Analysis Using Routine CT‐Staging of Lung Cancer Patients for Survival Prognosis

医学 肌萎缩 肺癌 比例危险模型 体质指数 生存分析 内科学 外科 肿瘤科
作者
Marc‐David Künnemann,Christian Römer,Anne Helfen,Annalen Bleckmann,Marcel Kemper,Walter Heindel,Tobias Brix,Michael Forsting,Johannes Haubold,Marcel Opitz,Martin Schuler,Felix Nensa,Katarzyna Borys,René Hosch
出处
期刊:Journal of Cachexia, Sarcopenia and Muscle [Wiley]
卷期号:16 (4): e70021-e70021 被引量:1
标识
DOI:10.1002/jcsm.70021
摘要

ABSTRACT Background AI‐driven automated body composition analysis (BCA) may provide quantitative prognostic biomarkers derived from routine staging CTs. This two‐centre study evaluates the prognostic value of these volumetric markers for overall survival in lung cancer patients. Methods Lung cancer cohorts from Hospital A ( n = 3345, median age 65, 86% NSCLC, 40% M1, 40% female) and B ( n = 1364, median age 66, 87% NSCLC, 37% M1, 38% female) underwent automated BCA of abdominal CTs ±60 days of primary diagnosis. A deep learning network segmented muscle, bone and adipose tissues (visceral = VAT, subcutaneous = SAT, intra‐/intermuscular = IMAT and total = TAT) to derive three markers: Sarcopenia Index (SI = Muscle/Bone), Myosteatotic Fat Index (MFI = IMAT/TAT) and Abdominal Fat Index (AFI = VAT/SAT). Kaplan–Meier survival analysis, Cox proportional hazards modelling and machine learning‐based survival prediction were performed. A survival model including clinical data (BMI, ECOG, L3‐SMI, ‐SATI, ‐VATI and ‐IMATI) was fitted on Hospital A data and validated on Hospital B data. Results In nonmetastatic NSCLC, high SI predicted longer survival across centres for males (Hospital A: 24.6 vs. 46.0 months; Hospital B: 13.3 vs. 28.9 months; both p < 0.001) and females (Hospital A: 37.9 vs. 53.6 months, p = 0.008; Hospital B: 23.0 vs. 28.6 months, p = 0.018). High MFI indicated reduced survival in males at both hospitals (Hospital A: 43.7 vs. 28.2 months; Hospital B: 28.8 vs. 14.3 months; both p ≤ 0.001) but showed center‐dependent effects in females (significant only in Hospital A, p < 0.01). In metastatic disease, SI remained prognostic for males at both centres ( p < 0.05), while MFI was significant only in Hospital A ( p ≤ 0.001) and AFI only in Hospital B ( p = 0.042). Multivariate Cox regression confirmed that higher SI was protective (A: HR 0.53, B: 0.59, p ≤ 0.001), while MFI was associated with shorter survival (A: HR 1.31, B: 1.12, p < 0.01). The multivariate survival model trained on Hospital A's data demonstrated prognostic differentiation of groups in internal ( n = 209, p ≤ 0.001) and external (Hospital B, n = 361, p = 0.044) validation, with SI feature importance (0.037) ranking below ECOG (0.082) and M‐status (0.078), outperforming all other features including conventional L3‐single‐slice measurements. Conclusion CT‐based volumetric BCA provides prognostic biomarkers in lung cancer with varying significance by sex, disease stage and centre. SI was the strongest prognostic marker, outperforming conventional L3‐based measurements, while fat‐related markers showed varying associations. Our multivariate model suggests that BCA markers, particularly SI, may enhance risk stratification in lung cancer, pending centre‐specific and sex‐specific validation. Integration of these markers into clinical workflows could enable personalized care and targeted interventions for high‐risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lmy完成签到,获得积分10
1秒前
magicyang完成签到,获得积分10
3秒前
HalfGumps完成签到,获得积分10
3秒前
哈哈呀完成签到 ,获得积分10
6秒前
kuyi完成签到 ,获得积分10
8秒前
晚风完成签到,获得积分10
9秒前
怪默完成签到,获得积分10
9秒前
槿曦完成签到 ,获得积分10
9秒前
胡振宁完成签到 ,获得积分10
10秒前
YaHaa完成签到,获得积分10
11秒前
Ru完成签到 ,获得积分10
12秒前
追寻如雪完成签到 ,获得积分10
14秒前
眼睛大毛衣完成签到,获得积分10
15秒前
聪慧芷巧完成签到,获得积分10
16秒前
LYH完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
Ferry完成签到,获得积分10
18秒前
20秒前
21秒前
务实鞅完成签到 ,获得积分10
21秒前
哈哈哈完成签到 ,获得积分10
23秒前
Yingkun_Xu发布了新的文献求助10
24秒前
25秒前
爱学习完成签到,获得积分10
26秒前
云柔竹劲完成签到 ,获得积分10
28秒前
兮遥遥完成签到 ,获得积分10
29秒前
桃桃甜筒发布了新的文献求助10
30秒前
害羞的夏柳完成签到,获得积分10
31秒前
Yingkun_Xu完成签到,获得积分10
31秒前
Qingzhu完成签到,获得积分10
32秒前
追风筝的少女完成签到 ,获得积分10
33秒前
快乐的鱼完成签到,获得积分10
34秒前
丫丫完成签到 ,获得积分10
34秒前
安安安安完成签到,获得积分20
37秒前
黄油可颂完成签到 ,获得积分10
38秒前
38秒前
Jerry20184完成签到 ,获得积分10
39秒前
七子完成签到,获得积分10
39秒前
知性的雅彤完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534783
求助须知:如何正确求助?哪些是违规求助? 4622704
关于积分的说明 14583085
捐赠科研通 4562931
什么是DOI,文献DOI怎么找? 2500533
邀请新用户注册赠送积分活动 1479977
关于科研通互助平台的介绍 1451306