清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PalmDiff: When Palmprint Generation Meets Controllable Diffusion Model

计算机科学 人工智能 扩散 计算机视觉 模式识别(心理学) 物理 热力学
作者
Long Tang,Tingting Chai,Zheng Zhang,Miao Zhang,Xiangqian Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3593974
摘要

Due to its distinctive texture and intricate details, palmprint has emerged as a critical modality in biometric identity recognition. The absence of large-scale public palmprint datasets has substantially impeded the advancement of palmprint research, resulting in inadequate accuracy in commercial palmprint recognition systems. However, existing generative methods exhibit insufficient generalization, as the images they generate differ in specific ways from the conditional images. This paper proposes a method for generating palmprint images using a controllable diffusion model (PalmDiff), which addresses the issue of insufficient datasets by generating palmprint data, improving the accuracy of palmprint recognition. We introduce a diffusion process that effectively tackles the problems of excessive noise and loss of texture details commonly encountered in diffusion models. A linear attention mechanism is employed to enhance the backbone's expressive capacity and reduce the computational complexity. To this end, we proposed an ID loss function to enable the diffusion model to generate palmprint images under the same identical space consistently. PalmDiff is compared with other generation methods in terms of both image quality and the enhancement of palmprint recognition performance. Experiments show that PalmDiff performs well in image generation, with an FID score of 13.311 on MPD and 18.434 on Tongji. Besides, PalmDiff has significantly improved various backbones for palmprint recognition compared to other generation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
糊涂的青烟完成签到 ,获得积分10
16秒前
小贾爱喝冰美式完成签到 ,获得积分10
27秒前
殷勤的紫槐完成签到,获得积分0
38秒前
44秒前
bkagyin应助科研通管家采纳,获得30
57秒前
MchemG应助科研通管家采纳,获得10
57秒前
MchemG应助科研通管家采纳,获得10
57秒前
早茶的馄饨完成签到,获得积分20
1分钟前
丘比特应助早茶的馄饨采纳,获得30
1分钟前
1分钟前
1分钟前
紫焰完成签到 ,获得积分10
1分钟前
1分钟前
鲤鱼山人完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
orixero应助天玄采纳,获得10
2分钟前
思源应助天玄采纳,获得10
2分钟前
爆米花应助天玄采纳,获得10
2分钟前
科研通AI6应助天玄采纳,获得10
2分钟前
科研通AI6应助秋半雪采纳,获得10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
冷酷的大山完成签到,获得积分10
4分钟前
xh完成签到 ,获得积分10
4分钟前
和风完成签到 ,获得积分10
4分钟前
4分钟前
Funnymudpee发布了新的文献求助10
4分钟前
清脆的大开完成签到,获得积分10
4分钟前
彦子完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482527
求助须知:如何正确求助?哪些是违规求助? 4583310
关于积分的说明 14389170
捐赠科研通 4512454
什么是DOI,文献DOI怎么找? 2472968
邀请新用户注册赠送积分活动 1459145
关于科研通互助平台的介绍 1432646