清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Elucidating the Mechanism of Xiaoqinglong Decoction in Chronic UrticariaTreatment: An Integrated Approach of Network Pharmacology, BioinformaticsAnalysis, Molecular Docking, and Molecular Dynamics Simulations

小桶 计算生物学 系统药理学 公共化学 生物 交互网络 系统生物学 对接(动物) 山奈酚 木犀草素 基因本体论 基因 生物信息学 药理学 医学 槲皮素 遗传学 生物化学 基因表达 药品 护理部 抗氧化剂
作者
Zhengjin Zhu,Lu Liu,Ho‐Keung Ng,Na Liang,Siheng Liu,Dan Sun,Wenbin Li
出处
期刊:Current Computer - Aided Drug Design [Bentham Science]
卷期号:21 被引量:2
标识
DOI:10.2174/0115734099391401250701045509
摘要

Introduction: Xiaoqinglong Decoction (XQLD) is a traditional Chinese medicinal formula commonly used to treat chronic urticaria (CU). However, its underlying therapeutic mechanisms remain incompletely characterized. This study employed an integrated approach combining network pharmacology, bioinformatics, molecular docking, and molecular dynamics simulations to identify the active components, potential targets, and related signaling pathways involved in XQLD';s therapeutic action against CU, thereby providing a mechanistic foundation for its clinical application. Methods: The active components of XQLD and their corresponding targets were identified using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. CU-related targets were retrieved from the OMIM and GeneCards databases. Subsequently, core components and targets were determined via protein-protein interaction (PPI) network analysis and component-target-pathway network construction. Topological analyses were performed using Cytoscape software to prioritize core nodes within these networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted via the DAVID database to identify enriched biological processes and signaling pathways. Molecular docking was performed to evaluate binding interactions between key components and core targets, while molecular dynamics (MD) simulations were employed to assess the stability of the component-target complexes with the lowest binding energy. Finally, CU-related targets of XQLD were validated using datasets from the Gene Expression Omnibus (GEO) database. Results: A total of 135 active components and 249 potential targets of XQLD were identified, alongside 1,711 CU-related targets. Core components, such as quercetin, kaempferol, beta-sitosterol, naringenin, stigmasterol, and luteolin, exhibited high degree values in the constructed networks. The core targets identified included AKT1, TNF, IL6, TP53, PTGS2, CASP3, BCL2, ESR1, PPARG, and MAPK3. GO and KEGG pathway enrichment analyses revealed the PI3K-Akt signaling pathway as a central regulatory mechanism. Molecular docking studies demonstrated strong binding affinities between active components and core targets, with the stigmasterol-AKT1 complex exhibiting the lowest binding energy (-11.4 kcal/mol) and high stability in MD simulations. Validation using GEO datasets identified 12 core genes shared between CU-related targets and XQLD-associated targets, including PTGS2 and IL6, which were also prioritized as core targets in the network pharmacology analyses. Discussion: This study comprehensively integrates multidisciplinary approaches to clarify the potential molecular mechanisms of XQLD in treating CU, highlighting its multitarget and multipathway synergistic effects. Molecular docking and dynamics simulations confirm the stable interaction between stigmasterol and the core target AKT1. Additionally, GEO dataset analysis verifies the pathogenic relevance of targets such as PTGS2 and IL6, significantly enhancing the credibility of our findings. These results provide a modern scientific basis for the traditional therapeutic effects of XQLD on CU and have important implications for developing multitarget treatments for this condition. However, this study mainly relies on database mining and computational simulations. Further in vitro and in vivo experimental validations are needed to confirm the predicted component-target-pathway interactions. Conclusion: This study identifies the active components, potential targets, and pathways through which XQLD exerts therapeutic effects on CU. These findings provide a theoretical foundation for further mechanistic studies and support their clinical application in the treatment of CU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
Kevin完成签到,获得积分10
25秒前
YuxinChen完成签到 ,获得积分10
28秒前
guo发布了新的文献求助10
29秒前
siiifang完成签到 ,获得积分10
30秒前
所所应助guo采纳,获得10
33秒前
英姑应助guo采纳,获得10
33秒前
菠萝包完成签到 ,获得积分10
49秒前
1分钟前
1分钟前
ivyjianjie发布了新的文献求助10
1分钟前
lod完成签到,获得积分10
1分钟前
minnie完成签到 ,获得积分10
1分钟前
2分钟前
guo发布了新的文献求助10
2分钟前
3分钟前
等等驳回了Owen应助
3分钟前
张勇发布了新的文献求助10
3分钟前
ranj完成签到,获得积分10
3分钟前
vitamin完成签到 ,获得积分10
3分钟前
allrubbish完成签到,获得积分10
4分钟前
4分钟前
汉堡包应助张勇采纳,获得10
4分钟前
4分钟前
等等发布了新的文献求助50
4分钟前
guo发布了新的文献求助10
4分钟前
桐桐应助ivyjianjie采纳,获得10
4分钟前
guo完成签到,获得积分10
4分钟前
5分钟前
所谓发布了新的文献求助10
5分钟前
6分钟前
1111完成签到,获得积分10
6分钟前
ivyjianjie发布了新的文献求助10
6分钟前
ivyjianjie完成签到,获得积分10
6分钟前
雨后完成签到 ,获得积分10
6分钟前
Aviciii完成签到,获得积分10
7分钟前
wrl2023完成签到,获得积分10
8分钟前
ys完成签到 ,获得积分10
8分钟前
8分钟前
朴实涵菡发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603408
求助须知:如何正确求助?哪些是违规求助? 4688392
关于积分的说明 14853592
捐赠科研通 4690914
什么是DOI,文献DOI怎么找? 2540679
邀请新用户注册赠送积分活动 1507015
关于科研通互助平台的介绍 1471640