An improved GNN using dynamic graph embedding mechanism: A novel end-to-end framework for rolling bearing fault diagnosis under variable working conditions

断层(地质) 计算机科学 图形 嵌入 卷积神经网络 方位(导航) 模式识别(心理学) 人工智能 人工神经网络 控制理论(社会学) 理论计算机科学 地质学 地震学 控制(管理)
作者
Zidong Yu,Changhe Zhang,Chao Deng
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110534-110534 被引量:98
标识
DOI:10.1016/j.ymssp.2023.110534
摘要

Traditional deep learning (DL)-based rolling bearing fault diagnosis methods usually use signals collected under specific working condition to train the diagnosis models. This may lead to the lack of domain adaptive ability of these trained models, thus making it difficult to obtain satisfactory diagnosis accuracy when working conditions fluctuate. To address it, a novel fault diagnosis framework based on the graph neural network (GNN) and dynamic graph embedding mechanism (DGE) was proposed in this paper. Firstly, convolutional neural network (CNN) is used to extract the hidden fault features from raw bearing vibration signals. Secondly, DGE module is designed with edge dropout mechanism to transform the features exacted by CNN into higher-level graph-structured features dynamically. Then, GNN is applied to further mine the fault features sensitivity to the fluctuating bearing working conditions. Finally, a novel mechanism named node voters is proposed to replace traditional graph-level attribute update function in GNN to obtain optimal fault pattern recognition results. Experiment results shows that the proposed framework can not only realize the end-to-end fault diagnosis of rolling bearings, but also has excellent domain adaptive ability to obtain better stability and diagnosis accuracy under variable working conditions compared to traditional DL-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨染完成签到,获得积分10
1秒前
昏睡的难破完成签到,获得积分10
1秒前
zimo完成签到,获得积分10
2秒前
2秒前
Akim应助shinn采纳,获得10
4秒前
kyf1993完成签到,获得积分10
4秒前
研友_VZG7GZ应助guzhfia采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
SciGPT应助Neal采纳,获得10
6秒前
7秒前
今后应助章丘吴彦祖采纳,获得10
7秒前
吴晨曦发布了新的文献求助10
9秒前
10秒前
keyanlv发布了新的文献求助10
10秒前
LKT完成签到,获得积分10
11秒前
11秒前
桐桐应助遥望星空采纳,获得10
12秒前
刘bait发布了新的文献求助10
12秒前
hh完成签到,获得积分10
12秒前
韩小韩关注了科研通微信公众号
12秒前
13秒前
张大泽同学完成签到,获得积分10
14秒前
查查完成签到 ,获得积分10
14秒前
11完成签到,获得积分20
14秒前
FashionBoy应助llllllll采纳,获得10
14秒前
16秒前
lsj发布了新的文献求助10
16秒前
16秒前
16秒前
Akim应助糟糕的铁锤采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
19秒前
wure10发布了新的文献求助10
20秒前
20秒前
ZG完成签到,获得积分10
20秒前
DHMO完成签到,获得积分10
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776956
求助须知:如何正确求助?哪些是违规求助? 5631393
关于积分的说明 15444543
捐赠科研通 4908967
什么是DOI,文献DOI怎么找? 2641505
邀请新用户注册赠送积分活动 1589491
关于科研通互助平台的介绍 1543995