秀丽隐杆线虫
基因
生物
转录组
百草枯
腺苷
RNA干扰
小桶
腺苷受体
信号转导
遗传学
受体
细胞生物学
基因表达
核糖核酸
生物化学
兴奋剂
作者
Lingmei Ma,Chunyan Ling,Shuning Hu,Sudan Ye,Chun Chen
标识
DOI:10.1093/toxres/tfad046
摘要
This study sought to identify the genes associated with adenosine's protective action against paraquat (PQ)-induced oxidative stress via the adenosine receptor (ADOR-1) in Caenorhabditis elegans (C. elegans). The C. elegans was divided into 3 groups-2 groups exposed to PQ, one in presence, and one in absence of adenosine-and a control group that was not treated. Each group's total RNA was extracted and sequenced. When the transcriptomes of these groups were analyzed, several genes were found to be differently expressed. These differentially expressed genes were significantly enriched in adenosine-response biological processes and pathways, including gene ontology terms related to neuropeptide and kyoto encyclopedia of genes and genomes pathways associated to cAMP pathway regulator activity. Quantitative reverse-transcription PCR confirmed that G-protein-coupled receptors signaling pathway involving dop-1, egl-30, unc-13, kin-1, and goa-1 genes may play crucial roles in modulating adenosine's protective action. Interestingly, there are no significant variations in the expression of the ador-1 gene across the 3 treatments, thereby indicating that adenosine receptor exerts a consistent and stable influence on its related pathways irrespective of the presence or absence of PQ. Furthermore, the wild-type group with ador-1 gene has higher survival rate than that of the ador-1-/RNA interference group while treated with PQ in the presence of adenosine. Conclusively, our study uncovered a number of novel PQ-response genes and adenosine receptor-related genes in C. elegans, which may function as major regulators of PQ-induced oxidative stress and indicate the possible protective effects of adenosine.
科研通智能强力驱动
Strongly Powered by AbleSci AI