共轭梯度法
行搜索
数学
水准点(测量)
梯度下降
趋同(经济学)
图像(数学)
非线性共轭梯度法
缩小
下降方向
算法
应用数学
下降(航空)
数学优化
计算机科学
人工智能
人工神经网络
工程类
半径
地理
计算机安全
大地测量学
航空航天工程
经济增长
经济
作者
Aliyu Muhammed Awwal,Lin Wang,Poom Kumam,Ibrahim Mohammed Sulaiman,Sani Salisu,Nasiru Salihu,Petcharaporn Yodjai
摘要
RMIL conjugate gradient method originally proposed by Rivaie et al. (2012) has recently gained lots of attention. In this article, we propose a generalized conjugate gradient parameter that contains both RMIL and its variant, that is, RMIL+, as special cases. We show that the search direction generated by the new method is sufficiently descent. Under standard mild conditions, we discuss the convergence analysis of the propose method. We demonstrate the numerical efficiency of the propose method on a set of unconstrained minimization benchmark test problems as well as an image restoration problem. The results of the experiment reveal that the proposed method performs better than its main competitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI