Estimation of Cyclic Stress–Strain Curves of Steels Based on Monotonic Properties Using Artificial Neural Networks

单调函数 人工神经网络 材料科学 压力(语言学) 合金 材料性能 拉伤 应力-应变曲线 结构工程 生物系统 计算机科学 变形(气象学) 数学 复合材料 人工智能 数学分析 工程类 医学 语言学 生物 内科学 哲学
作者
Tea Marohnić,Robert Basan,Ela Marković
出处
期刊:Materials [MDPI AG]
卷期号:16 (14): 5010-5010 被引量:2
标识
DOI:10.3390/ma16145010
摘要

This paper introduces a novel method for estimating the cyclic stress–strain curves of steels based on their monotonic properties and plastic strain amplitudes, utilizing artificial neural networks (ANNs). ANNs were trained on a substantial number of experimental data for steels, collected from relevant literature, and divided into subgroups according to alloying elements content (unalloyed, low-alloy, and high-alloy steels). Only monotonic properties that were proven to be relevant for the estimation of points on the stress–strain curve were used. The performance of the developed ANNs was assessed using an independent set of data, and the results were compared to experimental values, values obtained by existing empirical estimation methods, and by previously developed ANNs. The results showed that the new approach which combines relevant monotonic properties and plastic strain amplitudes as inputs to ANNs for cyclic stress–strain curve estimation is better than the previously used approach where ANNs estimate the parameters of the Ramberg–Osgood material model separately. This shows that a more favorable approach to the estimation of cyclic stress–strain behavior would be to directly estimate corresponding material curves using monotonic properties. Additionally, this may also reduce inaccuracies resulting from simplified representations of the actual material behavior inherent in the material model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
潇洒夜安完成签到,获得积分10
刚刚
万能图书馆应助田国兵采纳,获得10
刚刚
小馒头完成签到,获得积分10
1秒前
大模型应助WUWEI采纳,获得10
1秒前
tao完成签到 ,获得积分10
1秒前
哈哈哈发布了新的文献求助10
3秒前
洪雨欣发布了新的文献求助10
3秒前
科目三应助sanmumu采纳,获得10
4秒前
5秒前
Catalina_S应助王一采纳,获得10
5秒前
shellyAPTX4869完成签到,获得积分10
5秒前
6秒前
CipherSage应助小文子采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
mira完成签到,获得积分10
8秒前
神经蛙发布了新的文献求助10
8秒前
JamesPei应助暖暖的禾日采纳,获得10
8秒前
善学以致用应助18岁的momo采纳,获得10
8秒前
9秒前
10秒前
千yu发布了新的文献求助10
10秒前
11秒前
11秒前
xiaolu发布了新的文献求助10
12秒前
彭于晏应助精明外套采纳,获得10
12秒前
BLUE完成签到,获得积分10
13秒前
harry2077发布了新的文献求助10
13秒前
xx完成签到,获得积分10
14秒前
14秒前
springlover完成签到,获得积分0
14秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
烟花应助陶醉的开山采纳,获得10
17秒前
风衣拖地发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532370
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576802
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499032
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450265