Enhancing Motor Imagery Classification with Residual Graph Convolutional Networks and Multi-Feature Fusion

残余物 计算机科学 图形 人工智能 特征(语言学) 模式识别(心理学) 卷积神经网络 融合 算法 理论计算机科学 语言学 哲学
作者
Fangzhou Xu,Weiyou Shi,Chengyan Lv,Yuan Sun,Shuai Guo,Chao Feng,Yang Zhang,Tzyy‐Ping Jung,Jiancai Leng
出处
期刊:International Journal of Neural Systems [World Scientific]
标识
DOI:10.1142/s0129065724500692
摘要

Stroke, an abrupt cerebrovascular ailment resulting in brain tissue damage, has prompted the adoption of motor imagery (MI)-based brain–computer interface (BCI) systems in stroke rehabilitation. However, analyzing electroencephalogram (EEG) signals from stroke patients poses challenges. To address the issues of low accuracy and efficiency in EEG classification, particularly involving MI, the study proposes a residual graph convolutional network (M-ResGCN) framework based on the modified S-transform (MST), and introduces the self-attention mechanism into residual graph convolutional network (ResGCN). This study uses MST to extract EEG time-frequency domain features, derives spatial EEG features by calculating the absolute Pearson correlation coefficient (aPcc) between channels, and devises a method to construct the adjacency matrix of the brain network using aPcc to measure the strength of the connection between channels. Experimental results involving 16 stroke patients and 16 healthy subjects demonstrate significant improvements in classification quality and robustness across tests and subjects. The highest classification accuracy reached 94.91% and a Kappa coefficient of 0.8918. The average accuracy and F1 scores from 10 times 10-fold cross-validation are 94.38% and 94.36%, respectively. By validating the feasibility and applicability of brain networks constructed using the aPcc in EEG signal analysis and feature encoding, it was established that the aPcc effectively reflects overall brain activity. The proposed method presents a novel approach to exploring channel relationships in MI-EEG and improving classification performance. It holds promise for real-time applications in MI-based BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韓大侠发布了新的文献求助20
1秒前
1秒前
wangjiwei发布了新的文献求助10
2秒前
Notorious完成签到,获得积分10
2秒前
3秒前
热情饼干发布了新的文献求助10
4秒前
4秒前
Hello应助ouo采纳,获得10
4秒前
4秒前
苟钟琴发布了新的文献求助10
4秒前
慕青应助瓦猫采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
Decline发布了新的文献求助10
9秒前
mofei发布了新的文献求助10
10秒前
Minimum发布了新的文献求助10
10秒前
聪明煎蛋发布了新的文献求助10
11秒前
暴打小赵完成签到,获得积分20
12秒前
认真的又夏完成签到,获得积分10
12秒前
12秒前
Ciri完成签到,获得积分10
12秒前
朱佳宁发布了新的文献求助10
13秒前
核桃应助shangx采纳,获得10
13秒前
14秒前
14秒前
14秒前
15秒前
拼搏向上发布了新的文献求助10
15秒前
pick发布了新的文献求助20
16秒前
3dyf发布了新的文献求助10
17秒前
炙心发布了新的文献求助10
18秒前
Yiphy发布了新的文献求助10
18秒前
Amadeus发布了新的文献求助10
19秒前
瓦猫发布了新的文献求助10
21秒前
两张发布了新的文献求助10
21秒前
Agan完成签到,获得积分10
22秒前
嘿嘿嘿完成签到,获得积分10
23秒前
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397