化学
钴
催化作用
氧化还原
配体(生物化学)
组合化学
溴化物
有机化学
生物化学
受体
作者
Zeming Wang,Minhao Li,Weiwei Zuo
摘要
The transition metal-catalyzed asymmetric hydrogenation (AH) of ketones to produce enantioenriched alcohols is an important reaction in organic chemistry with applications in the pharmaceutical and agrochemical fields. Using earth-abundant, biorelevant cobalt as the central metal in the catalyst has a high potential to improve sustainability and achieve hydrogenation reactions that are scalable. However, due to the high d-electron count, designing cobalt catalysts that exhibit turnover numbers (TONs, ≥1000) and enantioselectivities (≥90%) sufficient for synthetic utility and practical scalability (≥1 kg scale) remains a challenge. In this work, an efficient catalyst design strategy utilizing an amino(imino)diphosphine Co(II) bromide precatalyst is presented to achieve this goal. The quantitative production of a wide range of secondary chiral alcohols with TONs of up to 150,000 and an enantiomeric excess (e.e.) of up to 99% at a scale of up to 1.35 kg was achieved, indicating that the proposed cobalt catalyst is highly promising for AH and scale-up reactions. A mechanistic study revealed that the synergism of an N-H functionality and a redox-active ligand endows the cobalt catalyst with a high productivity and excellent enantioselectivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI