亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification and validation of a prognostic signature of drug resistance and mitochondrial energy metabolism-related differentially expressed genes for breast cancer

鉴定(生物学) 乳腺癌 基因 签名(拓扑) 生物 计算生物学 能量代谢 癌症 药物代谢 遗传学 生物信息学 肿瘤科 药品 医学 药理学 内分泌学 生态学 几何学 数学
作者
Tiankai Xu,Chu Chu,Shuyu Xue,Tongchao Jiang,Ying Wang,Wen Xia,Huan‐Xin Lin
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4757124/v1
摘要

Abstract Background: Drug resistance constitutes one of the principal causes of poor prognosis in breast cancer patients. Cancer cells can survive independently of the energy provided by mitochondria; however, they are incapable of synthesizing new DNA strands without mitochondrial involvement.This may suggest that mitochondrial energy metabolism could be related to drug resistance. Hence, drug resistance and mitochondrial energy metabolism-related differentially expressed genes (DMRDEGs) may emerge as candidates for novel cancer biomarkers. This study endeavors to assess the viability of DMRDEGs as biomarkers or therapeutic targets for breast cancer. Methods: We utilized the DRESIS database and MSigDB to identify genes related to drug resistance. Additionally, we sourced genes associated with mitochondrial energy metabolism from GeneCards and extant literature. By merging these genes with the differentially expressed genes observed in normal and tumor tissues from the TCGA-BRCA and GEO databases, we successfully identified the DMRDEGs. Employing unsupervised consensus Clustering, we divided breast cancer patients into two distinct groups based on the DMRDEGs. Consequently, we identified four hub genes to formulate a prognostic model, applying Cox regression, LASSO regression, and Random Forest methods. Furthermore, we examined the immune infiltration and tumor mutation burden of the genes within our model and scrutinized the divergences in the immune microenvironment between high- and low-risk groups. Small hairpin RNA and lentiviral plasmids were designed for the stable transfection of breast cancer cell lines MDA-MB-231 and HCC1806. By conducting clone formation, scratch test and transwell assays, we initiated a preliminary investigation into the mechanistic roles of AIFM1. Results: We utilized DMRDEGs to develop a prognostic model that includes four mRNAs for breast cancer, which, by combining various clinical features and critical breast cancer facets, proved to be remarkably effective in forecasting patient outcomes. Additionally, AIFM1 appeared to enhance the proliferation, migration, and invasiveness of the breast cancer cell lines MDA-MB-231 and HCC1806. Conclusions: DMRDEGs have the potential to act as diagnostic markers and therapeutic targets for breast cancer. Within the mutated associated genes, ATP7B, FUS, AIFM1, and PPARG could serve as early diagnostic indicators, and notably, AIFM1 may present itself as a promising therapeutic target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
12秒前
17秒前
李小小完成签到,获得积分10
26秒前
53秒前
朱志伟发布了新的文献求助10
58秒前
善学以致用应助Ahan采纳,获得10
1分钟前
1分钟前
1分钟前
杨涵月发布了新的文献求助10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
安渝发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Ahan发布了新的文献求助10
1分钟前
完美世界应助Again采纳,获得10
2分钟前
2分钟前
2分钟前
鸭鸭发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Again发布了新的文献求助10
2分钟前
承乐应助朱志伟采纳,获得10
2分钟前
努力的淼淼完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
赘婿应助ceeray23采纳,获得20
3分钟前
斯文败类应助ceeray23采纳,获得20
3分钟前
皮皮应助ceeray23采纳,获得20
3分钟前
科研通AI2S应助ceeray23采纳,获得20
3分钟前
酷波er应助ceeray23采纳,获得20
3分钟前
精明浩然应助ceeray23采纳,获得20
3分钟前
天天快乐应助ceeray23采纳,获得20
3分钟前
传奇3应助Danielwill采纳,获得10
3分钟前
辉辉应助二狗采纳,获得10
4分钟前
4分钟前
LYCORIS发布了新的文献求助30
4分钟前
4分钟前
大个应助杨涵月采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606566
求助须知:如何正确求助?哪些是违规求助? 4691063
关于积分的说明 14866842
捐赠科研通 4708002
什么是DOI,文献DOI怎么找? 2542911
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276