医学
接收机工作特性
肾移植
机器学习
移植
队列
逻辑回归
人工智能
内科学
肿瘤科
计算机科学
作者
Jin-Myung Kim,HyoJe Jung,Hye Eun Kwon,Youngmin Ko,Joo Hee Jung,Hyunwook Kwon,Young Hoon Kim,Tae Joon Jun,Sang‐Hyun Hwang,Sung Shin
标识
DOI:10.1097/js9.0000000000002028
摘要
Accurate forecasting of clinical outcomes after kidney transplantation is essential for improving patient care and increasing the success rates of transplants. Our study employs advanced machine learning (ML) algorithms to identify crucial prognostic indicators for kidney transplantation. By analyzing complex datasets with ML models, we aim to enhance prediction accuracy and provide valuable insights to support clinical decision-making.
科研通智能强力驱动
Strongly Powered by AbleSci AI