Nitrogen-doped hierarchical porous carbon with enhanced interfacial affinity for the efficient adsorption of antibiotic micropollutants from water

吸附 氮气 多孔性 碳纤维 化学工程 活性炭 环境化学 化学 材料科学 有机化学 复合材料 复合数 工程类
作者
Zhiang Hou,Huachun Lan,Xiaoqiang An,Ruijuan Liu,Lan Yang,Lie Liu,Huijuan Liu,Jiuhui Qu
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:497: 155055-155055 被引量:16
标识
DOI:10.1016/j.cej.2024.155055
摘要

Hierarchical porous carbon presents great application potentials for water purification, but its structure–property relationship during the adsorption removal of antibiotic micropollutants remains unclear due to the complex interactions between them. Herein, we demonstrate a nitrogen doping strategy to simultaneously modulate the pore structure and affinity sites of hierarchical porous carbons. By fitting the pore structure of nitrogen-doped hierarchical porous carbon with typical antibiotics, we improve the initial adsorption rate of carbonaceous adsorbents by orders of magnitude. Experimental characterizations and theoretical calculations reveal the formation of electron-deficient/rich centers in the sp2 hybridization plane of carbon caused by nitrogen doping, significantly strengthening the π-π interaction between the adsorbents and antibiotics, with 7.28-times and 2.2-times higher equilibrium adsorption capacity under the optimal conditions compared to the pristine carbon and commercial activated carbon, respectively. A versatile apparatus is elaborately designed for water purification by combining high-efficiency adsorption and microfiltration, realizing nearly 100% and over 92% removal of micropollutants from tap water and real pharmaceutical wastewater, respectively via single-pass treatment. This research provides a solution for the high-efficiency treatment of micropollutants by using hierarchical porous carbon with modulated pore structure and interfacial affinity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谨言发布了新的文献求助10
刚刚
gaochi发布了新的文献求助10
刚刚
无花果应助masirthu采纳,获得10
刚刚
jnshen完成签到 ,获得积分10
1秒前
milkmore发布了新的文献求助10
1秒前
iNk应助芝士采纳,获得10
1秒前
浮游应助芝士采纳,获得10
1秒前
充电宝应助欢喜妙梦采纳,获得10
1秒前
yu完成签到,获得积分20
2秒前
2秒前
要减肥向日葵完成签到,获得积分10
2秒前
啊哭发布了新的文献求助10
2秒前
CipherSage应助我不叫蔚采纳,获得10
2秒前
yongtt发布了新的文献求助10
3秒前
3秒前
GodMG发布了新的文献求助10
3秒前
3秒前
3秒前
smm完成签到 ,获得积分10
3秒前
朴实以松完成签到,获得积分10
3秒前
lh发布了新的文献求助10
4秒前
4秒前
隐形曼青应助务实凡灵采纳,获得10
4秒前
唐山恶少完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
无语完成签到,获得积分10
6秒前
mm完成签到,获得积分10
7秒前
7秒前
跳跃幻枫发布了新的文献求助10
7秒前
7秒前
ruoxiliu驳回了Ava应助
7秒前
8秒前
英俊的铭应助纪秋采纳,获得10
9秒前
pretzel发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
AdnanKhan发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676060
求助须知:如何正确求助?哪些是违规求助? 4053945
关于积分的说明 12535999
捐赠科研通 3748046
什么是DOI,文献DOI怎么找? 2070131
邀请新用户注册赠送积分活动 1099180
科研通“疑难数据库(出版商)”最低求助积分说明 978873