DL_BBBP: blood-brain barrier permeability prediction based on molecular property using deep learning

磁导率 血脑屏障 财产(哲学) 计算机科学 人工智能 材料科学 化学 神经科学 心理学 中枢神经系统 生物化学 认识论 哲学
作者
Yu Sun,Han Zhou,Ziyang Wen,Ce Liang,Jie Tang,Lu Wang,Xiumin Shi
标识
DOI:10.1117/12.3044459
摘要

The ability of compounds to pass through the blood-brain barrier is an important factor in drug development related to the central nervous system. Therefore, predicting the blood-brain barrier permeability of compounds at high throughput and providing appropriate candidate compounds are crucial for the development of related drugs. Although traditional experimental methods can also predict the blood-brain barrier permeability of compounds, they are costly and have long time cycle. To assist in related research, this article proposes a neural network model using deep learning algorithm to complete the task of predicting blood-brain barrier permeability of compounds, and names it DL_BBBP. In DL_BBBP, various compounds are characterized using molecular graphs and MACCS molecular fingerprints. Specifically, we conducted feature complementarity processing on MACCS, removed information about molecular substructures to prevent duplication and omission. By extracting features from the MACCS molecular fingerprints and molecular graphs of the compounds, we predict the blood-brain barrier permeability of the compounds and compare the results with some current deep learning models and machine learning methods. The validation results verify that the model's performance is better than state of the art models, and the prediction of the blood-brain barrier permeability of the compounds is accurate and effective. Therefore, it is believed that this model has great potential in the field of drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助11采纳,获得20
1秒前
linhuafeng发布了新的文献求助10
1秒前
2秒前
恰同学少年完成签到,获得积分10
4秒前
娃娃菜发布了新的文献求助10
4秒前
4秒前
爱学习的好孩子完成签到,获得积分10
5秒前
Gu发布了新的文献求助10
8秒前
喵总完成签到,获得积分10
9秒前
9秒前
今后应助张文涛采纳,获得10
9秒前
12秒前
13秒前
代桃完成签到,获得积分10
14秒前
科研小王子完成签到,获得积分10
14秒前
rpe完成签到,获得积分10
14秒前
15秒前
汉堡包应助陈陈陈采纳,获得10
18秒前
18秒前
蔡菜菜发布了新的文献求助10
19秒前
啦啦啦发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
虚幻中蓝发布了新的文献求助10
22秒前
24秒前
24秒前
26秒前
wqhx完成签到,获得积分10
26秒前
Yami发布了新的文献求助10
27秒前
陈陈陈发布了新的文献求助10
29秒前
深蓝发布了新的文献求助10
30秒前
烟花应助Luna采纳,获得30
31秒前
乐乐应助搬砖美少女采纳,获得10
32秒前
aftale完成签到 ,获得积分10
32秒前
zkk完成签到,获得积分10
33秒前
Nano完成签到,获得积分10
34秒前
Orange应助勤恳绝义采纳,获得10
34秒前
35秒前
深蓝完成签到,获得积分10
36秒前
陈陈陈完成签到,获得积分10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240958
求助须知:如何正确求助?哪些是违规求助? 3774624
关于积分的说明 11853922
捐赠科研通 3429675
什么是DOI,文献DOI怎么找? 1882570
邀请新用户注册赠送积分活动 934362
科研通“疑难数据库(出版商)”最低求助积分说明 840952