Association of metabolic syndrome severity with frailty progression among Chinese middle and old-aged adults: a longitudinal study

医学 血管病学 代谢综合征 联想(心理学) 内科学 老年学 糖尿病 人口学 肥胖 内分泌学 哲学 认识论 社会学
作者
Peng Zeng,Minjie Li,JiXing Cao,Long Zeng,Cheng Jiang,Feng Lin
出处
期刊:Cardiovascular Diabetology [Springer Nature]
卷期号:23 (1) 被引量:4
标识
DOI:10.1186/s12933-024-02379-9
摘要

The binary diagnosis of Metabolic Syndrome(MetS) fails to accurately evaluate its severity, and the association between MetS severity and frailty progression remains inadequately elucidated. This study aims to clarify the relationship between the severity of MetS and the progression of frailty among the middle-aged and elderly population in China. Participants from the 2011–2018 China Health and Retirement Longitudinal Study(CHARLS) were included for a longitudinal analysis. The study employs a frailty index(FI) based on 32 health deficits to diagnose frailty and to assess FI trajectories. An age-sex-ethnicity-specific MetS scoring model (MetS score) was used to assess metabolic syndrome severity in Chinese adults. The Cumulative MetS score from 2012 to 2015 was calculated using the formula: (MetS score in wave 1 + MetS score in wave 3) / 2 × time(2015 - 2012). The association between MetS score, Cumulative MetS score, and the risk and trajectory of frailty were evaluated using Cox regression/logistic regression, and linear mixed models. Restricted Cubic Splines(RCS) models were utilized to detect potential non-linear associations. A higher MetS score was significantly associated with an increased risk of frailty(HR per 1 SD increase = 1.205; 95%CI: 1.14 to 1.273) and an accelerated FI trajectory(β per 1 SD increase = 0.113 per year; 95%CI: 0.075 to 0.15 per year). Evaluating changes in MetS score using a Cumulative MetS score indicated that each 1 SD increase in the Cumulative MetS score increased the risk of frailty by 22.2%(OR = 1.222; 95%CI: 1.133 to 1.319) and accelerated the rate of increase in FI(β = 0.098 per year; 95%CI: 0.058 to 0.138 per year). RCS model results demonstrated a dose-response curve relationship between MetS score and Cumulative MetS score with frailty risk. Stratified analysis showed consistency across subgroups. The interaction results indicate that in males and individuals under aged 60, MetS score may accelerate the increase in FI, a finding consistent across both models. Our findings underscore the positive correlation between the severity of MetS and frailty progression in the middle-aged and elderly, highlighting the urgent need for early identification of MetS and targeted interventions to reduce the risk of frailty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助小刺猬采纳,获得10
刚刚
老艺人完成签到,获得积分10
刚刚
Xie完成签到,获得积分10
1秒前
1秒前
阿柒发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
qwert完成签到,获得积分10
4秒前
Cora完成签到,获得积分10
4秒前
帝蒼完成签到,获得积分10
5秒前
大漂亮发布了新的文献求助10
6秒前
TGGXS完成签到,获得积分10
6秒前
7秒前
Eureka发布了新的文献求助10
7秒前
Zhou完成签到,获得积分10
7秒前
暖粥发布了新的文献求助10
8秒前
情怀应助秋水采纳,获得10
8秒前
8秒前
8秒前
9秒前
qintiantian完成签到,获得积分10
9秒前
不发一区不改名完成签到 ,获得积分10
9秒前
mit发布了新的文献求助10
10秒前
10秒前
11秒前
深情安青应助乔垣结衣采纳,获得30
12秒前
13秒前
核桃应助woshidahunzi采纳,获得10
13秒前
smileriver完成签到,获得积分10
14秒前
15秒前
15秒前
落泺发布了新的文献求助10
16秒前
善学以致用应助Jaden采纳,获得10
16秒前
月倚樱落时完成签到,获得积分10
16秒前
哈哈悦发布了新的文献求助10
16秒前
海德堡完成签到,获得积分10
18秒前
来来发布了新的文献求助10
20秒前
xia完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472385
求助须知:如何正确求助?哪些是违规求助? 4574678
关于积分的说明 14347789
捐赠科研通 4502046
什么是DOI,文献DOI怎么找? 2466815
邀请新用户注册赠送积分活动 1454881
关于科研通互助平台的介绍 1429206