散斑噪声
人工智能
计算机科学
光学相干层析成像
降噪
模仿
噪音(视频)
连贯性(哲学赌博策略)
计算机视觉
还原(数学)
斑点图案
图像(数学)
心理学
光学
数学
物理
几何学
社会心理学
量子力学
作者
Bin Yao,Lujia Jin,Jiakui Hu,Yuzhao Liu,Yuepeng Yan,Qing Li,Yanye Lu
标识
DOI:10.1088/1361-6560/ad708c
摘要
Optical coherence tomography (OCT) is widely used in clinical practice for its non-invasive, high-resolution imaging capabilities. However, speckle noise inherent to its low coherence principle can degrade image quality and compromise diagnostic accuracy. While deep learning methods have shown promise in reducing speckle noise, obtaining well-registered image pairs remains challenging, leading to the development of unpaired methods. Despite their potential, existing unpaired methods suffer from redundancy in network structures or interaction mechanisms. Therefore, a more streamlined method for unpaired OCT denoising is essential.
科研通智能强力驱动
Strongly Powered by AbleSci AI