Unsupervised Non-rigid Histological Image Registration Guided by Keypoint Correspondences Based on Learnable Deep Features with Iterative Training

人工智能 图像配准 计算机视觉 计算机科学 模式识别(心理学) 迭代法 迭代重建 图像(数学) 医学影像学 数学 算法
作者
Xingyue Wei,Lin Ge,Lijie Huang,Jianwen Luo,Yan Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3447214
摘要

Histological image registration is a fundamental task in histological image analysis. It is challenging because of substantial appearance differences due to multiple staining. Keypoint correspondences, i.e., matched keypoint pairs, have been introduced to guide unsupervised deep learning (DL) based registration methods to handle such a registration task. This paper proposes an iterative keypoint correspondence-guided (IKCG) unsupervised network for non-rigid histological image registration. Fixed deep features and learnable deep features are introduced as keypoint descriptors to automatically establish keypoint correspondences, the distance between which is used as a loss function to train the registration network. Fixed deep features extracted from DL networks that are pre-trained on natural image datasets are more discriminative than handcrafted ones, benefiting from the deep and hierarchical nature of DL networks. The intermediate layer outputs of the registration networks trained on histological image datasets are extracted as learnable deep features, which reveal unique information for histological images. An iterative training strategy is adopted to train the registration network and optimize learnable deep features jointly. Benefiting from the excellent matching ability of learnable deep features optimized with the iterative training strategy, the proposed method can solve the local non-rigid large displacement problem, an inevitable problem usually caused by misoperation, such as tears in producing tissue slices. The proposed method is evaluated on the Automatic Non-rigid Histology Image Registration (ANHIR) website and AutomatiC Registration Of Breast cAncer Tissue (ACROBAT) website. It ranked 1st on both websites as of August 6th, 2024.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的安梦完成签到,获得积分10
1秒前
学术疯狗完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
aaaiii完成签到,获得积分10
2秒前
谨慎忆翠完成签到,获得积分10
3秒前
可靠的薯片完成签到,获得积分10
3秒前
小新小新发布了新的文献求助10
3秒前
zwjy完成签到,获得积分10
3秒前
咕咕呱呱发布了新的文献求助10
3秒前
忐忑的致远完成签到,获得积分10
3秒前
隐形静芙发布了新的文献求助10
3秒前
4秒前
mmmmmMM完成签到,获得积分10
4秒前
Liu完成签到,获得积分20
4秒前
4秒前
HHH发布了新的文献求助10
5秒前
CodeCraft应助事在人为采纳,获得10
5秒前
5秒前
5秒前
Zhanghh87完成签到,获得积分10
5秒前
风吹似夏完成签到,获得积分10
6秒前
7秒前
山海完成签到,获得积分10
7秒前
小野狼完成签到,获得积分10
7秒前
ff0110完成签到,获得积分10
7秒前
r93527005完成签到,获得积分10
7秒前
在水一方应助沟通亿心采纳,获得10
8秒前
Haiyang应助Max采纳,获得10
8秒前
gougou发布了新的文献求助10
8秒前
liuzhou发布了新的文献求助20
8秒前
9秒前
orixero应助Amorfati采纳,获得10
9秒前
9秒前
麻明英完成签到,获得积分10
9秒前
阿媛呐完成签到,获得积分10
10秒前
JOY完成签到,获得积分20
10秒前
千寻完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051