亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Non-rigid Histological Image Registration Guided by Keypoint Correspondences Based on Learnable Deep Features with Iterative Training

人工智能 图像配准 计算机视觉 计算机科学 模式识别(心理学) 迭代法 迭代重建 图像(数学) 医学影像学 数学 算法
作者
Xingyue Wei,Lin Ge,Lijie Huang,Jianwen Luo,Yan Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3447214
摘要

Histological image registration is a fundamental task in histological image analysis. It is challenging because of substantial appearance differences due to multiple staining. Keypoint correspondences, i.e., matched keypoint pairs, have been introduced to guide unsupervised deep learning (DL) based registration methods to handle such a registration task. This paper proposes an iterative keypoint correspondence-guided (IKCG) unsupervised network for non-rigid histological image registration. Fixed deep features and learnable deep features are introduced as keypoint descriptors to automatically establish keypoint correspondences, the distance between which is used as a loss function to train the registration network. Fixed deep features extracted from DL networks that are pre-trained on natural image datasets are more discriminative than handcrafted ones, benefiting from the deep and hierarchical nature of DL networks. The intermediate layer outputs of the registration networks trained on histological image datasets are extracted as learnable deep features, which reveal unique information for histological images. An iterative training strategy is adopted to train the registration network and optimize learnable deep features jointly. Benefiting from the excellent matching ability of learnable deep features optimized with the iterative training strategy, the proposed method can solve the local non-rigid large displacement problem, an inevitable problem usually caused by misoperation, such as tears in producing tissue slices. The proposed method is evaluated on the Automatic Non-rigid Histology Image Registration (ANHIR) website and AutomatiC Registration Of Breast cAncer Tissue (ACROBAT) website. It ranked 1st on both websites as of August 6th, 2024.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Enso完成签到 ,获得积分10
11秒前
15秒前
量子星尘发布了新的文献求助10
26秒前
29秒前
阿里给阿里的求助进行了留言
33秒前
小透明发布了新的文献求助10
34秒前
48秒前
SUNny发布了新的文献求助10
49秒前
59秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
HYQ完成签到 ,获得积分10
1分钟前
2分钟前
等待安莲完成签到,获得积分10
2分钟前
完美世界应助等待安莲采纳,获得10
2分钟前
2分钟前
阿里完成签到,获得积分10
2分钟前
2分钟前
CC完成签到,获得积分10
2分钟前
3分钟前
3分钟前
东溟渔夫发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
等待安莲发布了新的文献求助10
3分钟前
笨笨的怜雪完成签到 ,获得积分10
4分钟前
科目三应助李佳怡采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
wodetaiyangLLL完成签到 ,获得积分10
5分钟前
5分钟前
MchemG应助TXZ06采纳,获得30
5分钟前
5分钟前
5分钟前
5分钟前
MchemG应助TXZ06采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664480
求助须知:如何正确求助?哪些是违规求助? 4862708
关于积分的说明 15107835
捐赠科研通 4823085
什么是DOI,文献DOI怎么找? 2581925
邀请新用户注册赠送积分活动 1536045
关于科研通互助平台的介绍 1494449