A method for early diagnosis of lung cancer from tumor originated DNA fragments using plasma cfDNA methylome and fragmentome profiles

肺癌 生物 DNA甲基化 计算生物学 DNA 进化生物学 肿瘤科 基因 遗传学 基因表达 医学
作者
Yeo Jin Kim,Hahyeon Jeon,Sungwon Jeon,Sung-Hun Lee,Changjae Kim,Ji‐Hye Ahn,Hyojin Um,Yeong Ju Woo,Jeong Seong-Ho,Yeonkyung Kim,Ha-Young Park,Hyung‐Joo Oh,Hyun-Ju Cho,Jin‐Han Bae,Ji Hoon Kim,Seolbin An,Sung-Bong Kang,Sungwoong Jho,Orsolya Bíró,Dávid Kis
出处
期刊:Molecular and Cellular Probes [Elsevier]
卷期号:66: 101873-101873 被引量:11
标识
DOI:10.1016/j.mcp.2022.101873
摘要

Early detection is critical for minimizing mortality from cancer. Plasma cell-free DNA (cfDNA) contains the signatures of tumor DNA, allowing us to quantify the signature and diagnose early-stage tumors. Here, we report a novel tumor fragment quantification method, TOF (Tumor Originated Fragment) for the diagnosis of lung cancer by quantifying and analyzing both the plasma cfDNA methylation patterns and fragmentomic signatures. TOF utilizes the amount of ctDNA predicted from the methylation density information of each cfDNA read mapped on 6243 lung-tumor-specific CpG markers. The 6243 tumor-specific markers were derived from lung tumor tissues by comparing them with corresponding normal tissues and healthy blood from public methylation data. TOF also utilizes two cfDNA fragmentomic signatures: 1) the short fragment ratio, and 2) the 5' end-motif profile. We used 298 plasma samples to analyze cfDNA signatures using enzymatic methyl-sequencing data from 201 lung cancer patients and 97 healthy controls. The TOF score showed 0.98 of the area under the curve in correctly classifying lung cancer from normal samples. The TOF score resolution was high enough to clearly differentiate even the early-stage non-small cell lung cancer patients from the healthy controls. The same was true for small cell lung cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
小饼干二发布了新的文献求助10
2秒前
3秒前
ling完成签到,获得积分10
3秒前
无辜的亦云完成签到,获得积分20
3秒前
狼牧羊城完成签到,获得积分10
4秒前
4秒前
炸馒头片快点好不好呀完成签到,获得积分10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
郁浅应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
BareBear应助科研通管家采纳,获得10
6秒前
Momomo应助科研通管家采纳,获得10
6秒前
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得30
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
Robinsn应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得30
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
美好斓应助风中吐司采纳,获得30
7秒前
Ava应助恋爱三角理论采纳,获得30
7秒前
我是老大应助ahslyycky采纳,获得10
8秒前
milly完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385