催化作用
重组
电化学
离子键合
材料科学
氧化物
电化学梯度
偏压
化学物理
氧化还原
膜
化学
离子
无机化学
电压
物理化学
物理
电极
有机化学
基因
量子力学
冶金
生物化学
作者
James B. Mitchell,Lihaokun Chen,Kurt Langworthy,Kevin Fabrizio,Shannon W. Boettcher
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2022-10-19
卷期号:7 (11): 3967-3973
被引量:24
标识
DOI:10.1021/acsenergylett.2c02043
摘要
Bipolar membranes (BPMs) can generate steady-state pH gradients in electrochemical cells, enabling half-reactions to occur in different pH environments, and are thus of broad interest. Forward-bias BPMs further enable new approaches to fuel cells, redox-flow batteries, and CO2 electrolyzers. In forward bias, the gradient in electrochemical potential drives ionic charge carriers toward the bipolar junction where they can recombine. We use a H2-pump electrochemical cell to study H+/OH– recombination at the bipolar junction. We discover that metal-oxide nanoparticles catalyze the recombination reaction in the bipolar junction under forward bias and find evidence that H+/OH– recombination occurs via a surface mechanism on the oxide catalyst. We propose a rate equation to describe the catalytic H+/OH– recombination mechanism, supported by numerical simulations. This work thus elucidates materials-design strategies for recombination catalysts to advance forward-bias BPM technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI