亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence, BI-RADS evaluation and morphometry: A novel combination to diagnose breast cancer using ultrasonography, results from multi-center cohorts

医学 双雷达 接收机工作特性 放射科 乳房成像 乳腺超声检查 超声波 乳腺癌 人工智能 乳腺摄影术 癌症 计算机科学 内科学
作者
Hessam Hamyoon,Wai Yee Chan,Afshin Mohammadi,Taha Yusuf Kuzan,Mohammad Mirza‐Aghazadeh‐Attari,Wai Yie Leong,Kübra Murzoglu Altintoprak,Anushya Vijayananthan,Kartini Rahmat,Nazimah Ab Mumin,Sook Sam Leong,Sajjad Ejtehadifar,Fariborz Faeghi,Jamileh Abolghasemi,Edward J. Ciaccio,U. Rajendra Acharya,Ali Abbasian Ardakani
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:157: 110591-110591 被引量:17
标识
DOI:10.1016/j.ejrad.2022.110591
摘要

To develop and validate a machine learning (ML) model for the classification of breast lesions on ultrasound images.In the present study, three separate data cohorts containing 1288 breast lesions from three countries (Malaysia, Iran, and Turkey) were utilized for MLmodel development and external validation. The model was trained on ultrasound images of 725 breast lesions, and validation was done separately on the remaining data. An expert radiologist and a radiology resident classified the lesions based on the BI-RADS lexicon. Thirteen morphometric features were selected from a contour of the lesion and underwent a three-step feature selection process. Five features were chosen to be fed into the model separately and combined with the imaging signs mentioned in the BI-RADS reference guide. A support vector classifier was trained and optimized.The diagnostic profile of the model with various input data was compared to the expert radiologist and radiology resident. The agreement of each approach with histopathologic specimens was also determined. Based on BI-RADS and morphometric features, the model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.885, which is higher than the expert radiologist and radiology resident performances with AUC of 0.814 and 0.632, respectively in all cohorts. DeLong's test also showed that the AUC of the ML protocol was significantly different from that of the expert radiologist (ΔAUCs = 0.071, 95%CI: (0.056, 0.086), P = 0.005).These results support the possible role of morphometric features in enhancing the already well-excepted classification schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研大咖杨某完成签到 ,获得积分10
19秒前
22秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
唐泽雪穗应助科研通管家采纳,获得10
25秒前
归尘应助科研通管家采纳,获得10
26秒前
归尘应助科研通管家采纳,获得10
26秒前
归尘应助科研通管家采纳,获得10
26秒前
星火完成签到,获得积分10
41秒前
ccccx发布了新的文献求助30
42秒前
47秒前
47秒前
54秒前
Orange应助hrpppp采纳,获得10
57秒前
1分钟前
hrpppp发布了新的文献求助10
1分钟前
MchemG完成签到,获得积分0
1分钟前
Ava应助hrpppp采纳,获得30
1分钟前
平淡如天完成签到,获得积分10
1分钟前
1分钟前
广州小肥羊完成签到 ,获得积分10
1分钟前
1分钟前
寡妇哥完成签到 ,获得积分10
1分钟前
1分钟前
liaoliao发布了新的文献求助10
1分钟前
星落枝头完成签到,获得积分10
1分钟前
LBB发布了新的文献求助10
2分钟前
星辰大海应助hn采纳,获得10
2分钟前
ccccx发布了新的文献求助10
2分钟前
星落枝头发布了新的文献求助10
2分钟前
2分钟前
hn发布了新的文献求助10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
LBB完成签到,获得积分10
2分钟前
Gryphon完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077449
求助须知:如何正确求助?哪些是违规求助? 4296510
关于积分的说明 13387106
捐赠科研通 4118965
什么是DOI,文献DOI怎么找? 2255614
邀请新用户注册赠送积分活动 1260024
关于科研通互助平台的介绍 1193332