清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

GA-Stacking: A New Stacking-Based Ensemble Learning Method to Forecast the COVID-19 Outbreak

随机森林 堆积 集成学习 决策树 计算机科学 人工智能 机器学习 Boosting(机器学习) 集合预报 Lasso(编程语言) 梯度升压 随机子空间法 数据挖掘 分类器(UML) 物理 万维网 核磁共振
作者
Walaa N. Ismail,Hessah A. Alsalamah,Ebtsam Mohamed
出处
期刊:Computers, materials & continua 卷期号:74 (2): 3945-3976 被引量:3
标识
DOI:10.32604/cmc.2023.031194
摘要

As a result of the increased number of COVID-19 cases, Ensemble Machine Learning (EML) would be an effective tool for combatting this pandemic outbreak. An ensemble of classifiers can improve the performance of single machine learning (ML) classifiers, especially stacking-based ensemble learning. Stacking utilizes heterogeneous-base learners trained in parallel and combines their predictions using a meta-model to determine the final prediction results. However, building an ensemble often causes the model performance to decrease due to the increasing number of learners that are not being properly selected. Therefore, the goal of this paper is to develop and evaluate a generic, data-independent predictive method using stacked-based ensemble learning (GA-Stacking) optimized by a Genetic Algorithm (GA) for outbreak prediction and health decision aided processes. GA-Stacking utilizes five well-known classifiers, including Decision Tree (DT), Random Forest (RF), RIGID regression, Least Absolute Shrinkage and Selection Operator (LASSO), and eXtreme Gradient Boosting (XGBoost), at its first level. It also introduces GA to identify comparisons to forecast the number, combination, and trust of these base classifiers based on the Mean Squared Error (MSE) as a fitness function. At the second level of the stacked ensemble model, a Linear Regression (LR) classifier is used to produce the final prediction. The performance of the model was evaluated using a publicly available dataset from the Center for Systems Science and Engineering, Johns Hopkins University, which consisted of 10,722 data samples. The experimental results indicated that the GA-Stacking model achieved outstanding performance with an overall accuracy of 99.99% for the three selected countries. Furthermore, the proposed model achieved good performance when compared with existing bagging-based approaches. The proposed model can be used to predict the pandemic outbreak correctly and may be applied as a generic data-independent model to predict the epidemic trend for other countries when comparing preventive and control measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
theo完成签到 ,获得积分10
3秒前
ycw7777完成签到,获得积分10
11秒前
PIngguo完成签到,获得积分10
11秒前
MuMu完成签到,获得积分10
12秒前
心静自然好完成签到 ,获得积分10
17秒前
zijingsy完成签到 ,获得积分10
18秒前
斯文的难破完成签到 ,获得积分10
27秒前
研友_Z7XY28完成签到 ,获得积分10
33秒前
1分钟前
小小怪发布了新的文献求助10
1分钟前
friend516完成签到 ,获得积分10
1分钟前
勤恳的雪卉完成签到,获得积分0
1分钟前
蜂蜜不是糖完成签到 ,获得积分10
1分钟前
CNYDNZB完成签到 ,获得积分10
1分钟前
cchen0902完成签到 ,获得积分10
1分钟前
传统的幻梦完成签到 ,获得积分10
1分钟前
CYYDNDB完成签到 ,获得积分10
2分钟前
maggiexjl完成签到,获得积分10
2分钟前
向前完成签到,获得积分10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
龙猫爱看书完成签到,获得积分10
3分钟前
不展完成签到 ,获得积分10
3分钟前
诺亚方舟哇哈哈完成签到 ,获得积分10
3分钟前
drhwang完成签到,获得积分10
3分钟前
lily完成签到 ,获得积分10
3分钟前
彩色的芷容完成签到 ,获得积分10
4分钟前
咯咯咯完成签到 ,获得积分10
4分钟前
tianshanfeihe完成签到 ,获得积分10
4分钟前
快乐的笑阳完成签到,获得积分10
4分钟前
Oliver完成签到 ,获得积分10
4分钟前
儒雅的夏翠完成签到,获得积分10
4分钟前
蓝意完成签到,获得积分0
5分钟前
KINGAZX完成签到 ,获得积分10
5分钟前
青山完成签到 ,获得积分10
5分钟前
六一儿童节完成签到 ,获得积分10
5分钟前
我独舞完成签到 ,获得积分10
5分钟前
李健应助科研通管家采纳,获得30
5分钟前
澄碧千顷完成签到 ,获得积分10
5分钟前
dashi完成签到 ,获得积分10
5分钟前
酷波er应助卜十三采纳,获得10
5分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819973
求助须知:如何正确求助?哪些是违规求助? 3362858
关于积分的说明 10418873
捐赠科研通 3081189
什么是DOI,文献DOI怎么找? 1695009
邀请新用户注册赠送积分活动 814799
科研通“疑难数据库(出版商)”最低求助积分说明 768522