VLTENet: A Deep-Learning-Based Vertebra Localization and Tilt Estimation Network for Automatic Cobb Angle Estimation

人工智能 计算机科学 柯布角 科布 卷积神经网络 椎骨 分割 深度学习 脊柱侧凸 模式识别(心理学) 倾斜(摄像机) 计算机视觉 特征(语言学) 机器学习 数学 哲学 外科 古生物学 生物 医学 遗传学 语言学 几何学
作者
Lulin Zou,Lijun Guo,Rong Zhang,Lixin Ni,Zhenzuo Chen,Xiuchao He,Jianhua Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 3002-3013 被引量:14
标识
DOI:10.1109/jbhi.2023.3258361
摘要

Scoliosis diagnosis and assessment rely upon Cobb angle estimation from X-ray images of the spine. Recently, automated scoliosis assessment has been greatly improved using deep learning methods. However, in such methods, the Cobb angle is usually predicted based on regression models that don't account for information of the spine structure. Alternatively, the Cobb angle can be estimated indirectly through landmark-detection and vertebra-segmentation, but this approach is still highly sensitive to small detection and segmentation errors. This paper proposes a novel deep-learning architecture, called the vertebra localization and tilt estimation network (VLTENet). This network boosts the Cobb angle estimation accuracy through employing vertebra localization and tilt estimation as network prediction goals. In particular, the VLTENet model innovatively combines a deep high-resolution network (HRNet) and a fully-convolutional U-Net architecture for capturing long-range contextual information, the overall structure, and local details in spinal X-ray images. A feature fusion channel attention (FFCA) module is also proposed to selectively emphasize more informative features and suppress less informative ones. In addition, a joint spine loss function (JS-Loss) is designed to account for the spine shape and other spatial constraints, so that the network focuses more on spine-related regions and ignore irrelevant background regions. Finally, we propose a new Cobb angle estimation method conforms with the clinical Cobb angle calculation guidelines, and produces accurate estimates for different types of scoliosis. Extensive experiments on the publically-available AASCE challenge dataset and on an in-house dataset demonstrated the superiority of our method for the task of automatic assessment of scoliosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈豆豆完成签到 ,获得积分10
1秒前
李小二完成签到,获得积分10
1秒前
彳亍完成签到,获得积分10
2秒前
leehoo完成签到,获得积分10
2秒前
2233完成签到,获得积分10
2秒前
背后友蕊完成签到,获得积分10
2秒前
2秒前
优秀笑寒完成签到,获得积分10
3秒前
雨下着的坡道完成签到,获得积分10
3秒前
科研木头人完成签到 ,获得积分10
3秒前
3秒前
regina完成签到,获得积分10
3秒前
斯文的秋白完成签到,获得积分10
4秒前
4秒前
墨之默完成签到,获得积分10
4秒前
Kail完成签到,获得积分10
4秒前
英俊的铭应助默默的巧蕊采纳,获得10
4秒前
乐易完成签到 ,获得积分10
4秒前
6秒前
wqk完成签到,获得积分10
6秒前
kitty发布了新的文献求助10
7秒前
还得学啊完成签到,获得积分10
7秒前
不想上班了完成签到,获得积分10
7秒前
火日立完成签到,获得积分10
7秒前
8秒前
Diego发布了新的文献求助30
8秒前
Diego发布了新的文献求助30
8秒前
谢会会完成签到 ,获得积分10
8秒前
8秒前
77完成签到,获得积分10
8秒前
隐形元绿完成签到,获得积分10
8秒前
想要每天睡到自然醒完成签到,获得积分10
8秒前
复杂三问完成签到 ,获得积分10
8秒前
ZHOUZHEN完成签到,获得积分10
9秒前
祈愿完成签到,获得积分10
9秒前
非而者厚应助追寻的怜容采纳,获得200
10秒前
orixero应助Fiona678采纳,获得10
10秒前
11秒前
hxl发布了新的文献求助10
11秒前
魔幻若血完成签到,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784953
求助须知:如何正确求助?哪些是违规求助? 3330354
关于积分的说明 10245493
捐赠科研通 3045616
什么是DOI,文献DOI怎么找? 1671722
邀请新用户注册赠送积分活动 800706
科研通“疑难数据库(出版商)”最低求助积分说明 759621