A Study on the Error Characteristics and Compensation Algorithm for Strain Gauge in Ship Structure Monitoring Systems

应变计 船体 补偿(心理学) 结构工程 梁(结构) 人工神经网络 计算机科学 拉伤 海洋工程 工程类 人工智能 精神分析 心理学 医学 内科学
作者
Xueqian Zhou,Yang Yu,Yishi Xu,Chenfeng Li,Huilong Ren
标识
DOI:10.1115/omae2022-81437
摘要

Abstract The ship structural stress monitoring system is one of the main technical approaches to realize intelligent ship hull structure, and it has been applied to high-performance ships and large-scale merchant cargo ships in recent years. The structure monitoring system can not only serve as the input of data-driven digital twin models of ships structures, but is also the basis for the derived decision support system. For this reason, it is crucially important to obtain accurate stress in the structure, and the error characteristics of strain gauges under possible combinations of load and temperature that a ship may undergo must be investigated. For a ship structure, the error characteristics of the strain gauges can be investigated by comparing the measures from the strain gauges installed on the ship and the stress obtained from numerical simulation. A neural network to compensate the errors of the strain gauges can be trained through measures from strain gauges and the numerical results for the stress at the same location. In this study, the analysis of the performance and the error characteristics of the strain gauges on a beam test piece are conducted. An experimental investigation of the response of two types of fiber Bragg grating strain gauge at different temperatures and different loads are conducted in the same approach. The performance and error characteristics of the strain gauges under different loads and temperatures are analyzed. Based on the analysis of error characteristics, various BP neural networks are constructed to compensate the errors of the strain gauges. Comparison of compensation results and experimental results of two types of fiber Bragg grating strain gauge shows that the proposed method can effectively reduce the influence of the error on the accuracy of the gauge. Application of this method requires the training samples of measures and numerical results for the stresses under known static loading conditions like berthed in a harbor or moving in calm water. Thus it is feasible to update the neural networks for the compensation of errors during the operation of ships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
1秒前
fortune发布了新的文献求助10
2秒前
luoye完成签到,获得积分10
4秒前
一一完成签到,获得积分10
5秒前
6秒前
6秒前
是玥玥啊发布了新的文献求助10
7秒前
ttyhtg完成签到,获得积分10
7秒前
7秒前
SciGPT应助小团子采纳,获得10
7秒前
loveyourself完成签到,获得积分10
8秒前
斯文的小旋风应助斑马采纳,获得20
9秒前
10秒前
明明完成签到,获得积分10
13秒前
hhhblabla发布了新的文献求助10
13秒前
che发布了新的文献求助10
13秒前
15秒前
balko完成签到,获得积分10
16秒前
18秒前
知性的觅露完成签到,获得积分10
19秒前
20秒前
煲煲煲仔饭完成签到 ,获得积分10
20秒前
tangrzh发布了新的文献求助30
23秒前
郑桂庆完成签到 ,获得积分10
24秒前
che完成签到,获得积分10
26秒前
27秒前
乐乐乐完成签到,获得积分10
27秒前
西了个东东锵完成签到,获得积分20
27秒前
乾儿完成签到,获得积分20
30秒前
30秒前
花花完成签到,获得积分20
31秒前
小王发布了新的文献求助10
32秒前
32秒前
32秒前
我是老大应助kepwake采纳,获得40
33秒前
Glorious完成签到,获得积分10
34秒前
34秒前
晴空万里完成签到,获得积分10
34秒前
loveyourself发布了新的文献求助30
36秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838561
求助须知:如何正确求助?哪些是违规求助? 3380900
关于积分的说明 10516199
捐赠科研通 3100474
什么是DOI,文献DOI怎么找? 1707508
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772949