Detection and Recognition Algorithm of Arbitrary-Oriented Oil Replenishment Target in Remote Sensing Image

最小边界框 计算机科学 计算 算法 跳跃式监视 特征(语言学) 帧(网络) 人工智能 骨干网 目标检测 图像(数学) 模式识别(心理学) 计算机网络 语言学 电信 哲学
作者
Yongjie Hou,Qingwen Yang,Li Li,Gang Shi
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (2): 767-767 被引量:6
标识
DOI:10.3390/s23020767
摘要

In view of the fact that the aerial images of UAVs are usually taken from a top-down perspective, there are large changes in spatial resolution and small targets to be detected, and the detection method of natural scenes is not effective in detecting under the arbitrary arrangement of remote sensing image direction, which is difficult to apply to the detection demand scenario of road technology status assessment, this paper proposes a lightweight network architecture algorithm based on MobileNetv3-YOLOv5s (MR-YOLO). First, the MobileNetv3 structure is introduced to replace part of the backbone network of YOLOv5s for feature extraction so as to reduce the network model size and computation and improve the detection speed of the target; meanwhile, the CSPNet cross-stage local network is introduced to ensure the accuracy while reducing the computation. The focal loss function is improved to improve the localization accuracy while increasing the speed of the bounding box regression. Finally, by improving the YOLOv5 target detection network from the prior frame design and the bounding box regression formula, the rotation angle method is added to make it suitable for the detection demand scenario of road technology status assessment. After a large number of algorithm comparisons and data ablation experiments, the feasibility of the algorithm was verified on the Xinjiang Altay highway dataset, and the accuracy of the MR-YOLO algorithm was as high as 91.1%, the average accuracy was as high as 92.4%, and the detection speed reached 96.8 FPS. Compared with YOLOv5s, the p-value and mAP values of the proposed algorithm were effectively improved. It can be seen that the proposed algorithm improves the detection accuracy and detection speed while greatly reducing the number of model parameters and computation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆4799发布了新的文献求助10
2秒前
aaiirrii发布了新的文献求助10
2秒前
斯文弘文发布了新的文献求助10
2秒前
3秒前
愉快西牛发布了新的文献求助10
4秒前
枫林醉完成签到,获得积分10
5秒前
亚鹏发布了新的文献求助10
6秒前
uuuu完成签到,获得积分10
6秒前
7秒前
vkey完成签到,获得积分10
7秒前
无花果关注了科研通微信公众号
8秒前
柚子应助能干苑睐采纳,获得10
10秒前
淡定妙海发布了新的文献求助10
12秒前
12秒前
GYH完成签到,获得积分10
14秒前
16秒前
19秒前
霏冉完成签到,获得积分10
22秒前
Jaikaran完成签到,获得积分10
22秒前
云深不知妖完成签到 ,获得积分10
23秒前
时与远方发布了新的文献求助10
23秒前
24秒前
无花果发布了新的文献求助10
24秒前
25秒前
26秒前
28秒前
量子星尘发布了新的文献求助10
30秒前
bunny发布了新的文献求助10
32秒前
Swin发布了新的文献求助10
32秒前
隐官大人发布了新的文献求助10
34秒前
Amy完成签到 ,获得积分10
36秒前
淡定妙海发布了新的文献求助10
36秒前
Swin完成签到,获得积分10
36秒前
perfect完成签到 ,获得积分10
38秒前
Yuuuu完成签到 ,获得积分10
40秒前
高晨焜完成签到,获得积分10
41秒前
42秒前
科研通AI5应助shuaxin456采纳,获得10
43秒前
852应助高晨焜采纳,获得10
45秒前
45秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212653
求助须知:如何正确求助?哪些是违规求助? 3746898
关于积分的说明 11789305
捐赠科研通 3414479
什么是DOI,文献DOI怎么找? 1873737
邀请新用户注册赠送积分活动 928097
科研通“疑难数据库(出版商)”最低求助积分说明 837403