亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection and Recognition Algorithm of Arbitrary-Oriented Oil Replenishment Target in Remote Sensing Image

最小边界框 计算机科学 计算 算法 跳跃式监视 特征(语言学) 帧(网络) 人工智能 骨干网 目标检测 图像(数学) 模式识别(心理学) 计算机网络 语言学 电信 哲学
作者
Yongjie Hou,Qingwen Yang,Li Li,Gang Shi
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (2): 767-767 被引量:6
标识
DOI:10.3390/s23020767
摘要

In view of the fact that the aerial images of UAVs are usually taken from a top-down perspective, there are large changes in spatial resolution and small targets to be detected, and the detection method of natural scenes is not effective in detecting under the arbitrary arrangement of remote sensing image direction, which is difficult to apply to the detection demand scenario of road technology status assessment, this paper proposes a lightweight network architecture algorithm based on MobileNetv3-YOLOv5s (MR-YOLO). First, the MobileNetv3 structure is introduced to replace part of the backbone network of YOLOv5s for feature extraction so as to reduce the network model size and computation and improve the detection speed of the target; meanwhile, the CSPNet cross-stage local network is introduced to ensure the accuracy while reducing the computation. The focal loss function is improved to improve the localization accuracy while increasing the speed of the bounding box regression. Finally, by improving the YOLOv5 target detection network from the prior frame design and the bounding box regression formula, the rotation angle method is added to make it suitable for the detection demand scenario of road technology status assessment. After a large number of algorithm comparisons and data ablation experiments, the feasibility of the algorithm was verified on the Xinjiang Altay highway dataset, and the accuracy of the MR-YOLO algorithm was as high as 91.1%, the average accuracy was as high as 92.4%, and the detection speed reached 96.8 FPS. Compared with YOLOv5s, the p-value and mAP values of the proposed algorithm were effectively improved. It can be seen that the proposed algorithm improves the detection accuracy and detection speed while greatly reducing the number of model parameters and computation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JazzWon完成签到,获得积分10
5秒前
5秒前
5秒前
无花果应助酷酷小天鹅采纳,获得10
11秒前
deswin完成签到 ,获得积分10
16秒前
huanger完成签到,获得积分10
25秒前
Percy完成签到 ,获得积分10
34秒前
FashionBoy应助大气的枫采纳,获得10
37秒前
41秒前
噜噜发布了新的文献求助10
44秒前
vagary完成签到,获得积分10
55秒前
糖醋里脊加醋完成签到 ,获得积分10
56秒前
顺利发布了新的文献求助10
1分钟前
蓝雷狮王完成签到 ,获得积分20
1分钟前
1分钟前
崔桓荣发布了新的文献求助10
1分钟前
南充市第一中学完成签到,获得积分10
1分钟前
1分钟前
风华正茂发布了新的文献求助10
1分钟前
顺利完成签到,获得积分20
1分钟前
1分钟前
Disay666发布了新的文献求助10
1分钟前
sudor123456完成签到,获得积分10
1分钟前
1分钟前
超帅的龙猫完成签到,获得积分20
1分钟前
134发布了新的文献求助10
1分钟前
英姑应助酷酷小天鹅采纳,获得10
1分钟前
Victor完成签到,获得积分10
1分钟前
1分钟前
风华正茂完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Disay666完成签到,获得积分10
2分钟前
2分钟前
Orange应助孟长歌采纳,获得10
2分钟前
吴瑞聪给吴瑞聪的求助进行了留言
2分钟前
小刘完成签到,获得积分10
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3937743
求助须知:如何正确求助?哪些是违规求助? 3483193
关于积分的说明 11022491
捐赠科研通 3213203
什么是DOI,文献DOI怎么找? 1776034
邀请新用户注册赠送积分活动 862231
科研通“疑难数据库(出版商)”最低求助积分说明 798341