Bearing remaining useful life prediction using self-adaptive graph convolutional networks with self-attention mechanism

稳健性(进化) 计算机科学 循环神经网络 图形 卷积神经网络 杠杆(统计) 机器学习 模式识别(心理学) 人工智能 数据挖掘 人工神经网络 理论计算机科学 生物化学 基因 化学
作者
Yupeng Wei,Dazhong Wu,Janis Terpenny
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:188: 110010-110010 被引量:44
标识
DOI:10.1016/j.ymssp.2022.110010
摘要

Bearings are commonly used to reduce friction between moving parts. Bearings may fail due to lubrication failure, contamination, corrosion, and fatigue. To prevent bearing failures, it is important to predict the remaining useful life (RUL) of bearings. While many data-driven methods have been introduced, very few studies have considered the correlation of features at different time points, such a correlation could be used to identify and aggregate features at different time points for improving the robustness of predictive models. Moreover, many existing data-driven methods leverage neural networks with recurrent characteristics such as recurrent neural network (RNN) and long short term memory (LSTM). These methods are ineffective in processing long sequences and require longer training time due to the recurrent characteristics. To address these issues, a Siamese LSTM network is firstly introduced to classify degradation stages before predicting the RUL of bearings. Then we introduce a self-adaptive graph convolutional network (SAGCN) along with a self-attention mechanism in order to consider the correlation of features at different time points without using recurrent characteristics. Experimental results have demonstrated that the proposed method can accurately predict the RUL with a minimum average root mean squared error of 0.119, and outperforms existing data-driven methods, such as graph convolutional network, convolutional LSTM, convolutional neural network, and generative adversarial network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHENHL完成签到,获得积分10
刚刚
cold寒完成签到,获得积分10
刚刚
刚刚
威武荔枝发布了新的文献求助10
1秒前
沉静白曼发布了新的文献求助30
1秒前
Emmalee应助星夜疏爱美食采纳,获得10
1秒前
t49779133发布了新的文献求助10
1秒前
北斋应助lilianan采纳,获得10
1秒前
pluto应助诚心夜春采纳,获得10
1秒前
1秒前
孙婉莹完成签到,获得积分10
2秒前
3秒前
clathrin完成签到,获得积分10
4秒前
下文献的蜉蝣完成签到 ,获得积分10
4秒前
林好人完成签到,获得积分10
4秒前
zhangwenkang发布了新的文献求助10
5秒前
6秒前
充电宝应助kingcell采纳,获得10
7秒前
Zzz关闭了Zzz文献求助
8秒前
t49779133完成签到,获得积分10
8秒前
zcr892003522发布了新的文献求助10
8秒前
promise发布了新的文献求助10
8秒前
风中的天晴完成签到 ,获得积分20
9秒前
传奇3应助李喜喜采纳,获得10
10秒前
10秒前
10秒前
TTTTTT完成签到,获得积分10
11秒前
11秒前
王二哈完成签到,获得积分10
11秒前
11秒前
Hello应助威武荔枝采纳,获得20
11秒前
刘艺娜发布了新的文献求助20
12秒前
万能图书馆应助chen采纳,获得10
12秒前
酷波er应助gean采纳,获得10
12秒前
科研通AI5应助南方周末采纳,获得10
13秒前
lilianan完成签到,获得积分10
13秒前
13秒前
15秒前
zhuzhuzhu1024完成签到,获得积分10
15秒前
大力尔云发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
McCance and Widdowson's Composition of Foods, 7th edition 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4468497
求助须知:如何正确求助?哪些是违规求助? 3929458
关于积分的说明 12193004
捐赠科研通 3582980
什么是DOI,文献DOI怎么找? 1969136
邀请新用户注册赠送积分活动 1007432
科研通“疑难数据库(出版商)”最低求助积分说明 901415