Bearing remaining useful life prediction using self-adaptive graph convolutional networks with self-attention mechanism

稳健性(进化) 计算机科学 循环神经网络 图形 卷积神经网络 杠杆(统计) 机器学习 模式识别(心理学) 人工智能 数据挖掘 人工神经网络 理论计算机科学 生物化学 基因 化学
作者
Yupeng Wei,Dazhong Wu,Janis Terpenny
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:188: 110010-110010 被引量:116
标识
DOI:10.1016/j.ymssp.2022.110010
摘要

Bearings are commonly used to reduce friction between moving parts. Bearings may fail due to lubrication failure, contamination, corrosion, and fatigue. To prevent bearing failures, it is important to predict the remaining useful life (RUL) of bearings. While many data-driven methods have been introduced, very few studies have considered the correlation of features at different time points, such a correlation could be used to identify and aggregate features at different time points for improving the robustness of predictive models. Moreover, many existing data-driven methods leverage neural networks with recurrent characteristics such as recurrent neural network (RNN) and long short term memory (LSTM). These methods are ineffective in processing long sequences and require longer training time due to the recurrent characteristics. To address these issues, a Siamese LSTM network is firstly introduced to classify degradation stages before predicting the RUL of bearings. Then we introduce a self-adaptive graph convolutional network (SAGCN) along with a self-attention mechanism in order to consider the correlation of features at different time points without using recurrent characteristics. Experimental results have demonstrated that the proposed method can accurately predict the RUL with a minimum average root mean squared error of 0.119, and outperforms existing data-driven methods, such as graph convolutional network, convolutional LSTM, convolutional neural network, and generative adversarial network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助NiLou采纳,获得10
刚刚
科研通AI2S应助seeeky采纳,获得10
1秒前
3927456843发布了新的文献求助10
1秒前
1秒前
丘比特应助郑梓龙采纳,获得10
3秒前
肖123发布了新的文献求助10
4秒前
杨筱涵发布了新的文献求助10
4秒前
科研通AI6应助Mmrc采纳,获得10
4秒前
5秒前
5秒前
6秒前
6秒前
科研通AI6应助liang2508采纳,获得10
7秒前
7秒前
科研通AI2S应助欢呼靳采纳,获得10
8秒前
Leon完成签到,获得积分10
8秒前
文艺过客发布了新的文献求助10
9秒前
万能图书馆应助雨滴采纳,获得10
10秒前
ss发布了新的文献求助30
10秒前
淡淡含海发布了新的文献求助10
10秒前
爆米花应助多情蓝采纳,获得10
11秒前
12发布了新的文献求助10
11秒前
最初的梦想完成签到 ,获得积分10
11秒前
田様应助杨羕采纳,获得10
12秒前
zhuzhu完成签到,获得积分10
12秒前
顾矜应助尚雅芳采纳,获得10
12秒前
3927456843完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
14秒前
思源应助沉静的万天采纳,获得30
14秒前
14秒前
jia7完成签到 ,获得积分10
15秒前
16秒前
Juni完成签到,获得积分10
17秒前
DZ发布了新的文献求助10
17秒前
12完成签到,获得积分10
17秒前
尖头叉子完成签到,获得积分10
18秒前
19秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382206
求助须知:如何正确求助?哪些是违规求助? 4505416
关于积分的说明 14021661
捐赠科研通 4414841
什么是DOI,文献DOI怎么找? 2425108
邀请新用户注册赠送积分活动 1417955
关于科研通互助平台的介绍 1395896