Bearing remaining useful life prediction using self-adaptive graph convolutional networks with self-attention mechanism

稳健性(进化) 计算机科学 循环神经网络 图形 卷积神经网络 杠杆(统计) 机器学习 模式识别(心理学) 人工智能 数据挖掘 人工神经网络 理论计算机科学 生物化学 基因 化学
作者
Yupeng Wei,Dazhong Wu,Janis Terpenny
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:188: 110010-110010 被引量:116
标识
DOI:10.1016/j.ymssp.2022.110010
摘要

Bearings are commonly used to reduce friction between moving parts. Bearings may fail due to lubrication failure, contamination, corrosion, and fatigue. To prevent bearing failures, it is important to predict the remaining useful life (RUL) of bearings. While many data-driven methods have been introduced, very few studies have considered the correlation of features at different time points, such a correlation could be used to identify and aggregate features at different time points for improving the robustness of predictive models. Moreover, many existing data-driven methods leverage neural networks with recurrent characteristics such as recurrent neural network (RNN) and long short term memory (LSTM). These methods are ineffective in processing long sequences and require longer training time due to the recurrent characteristics. To address these issues, a Siamese LSTM network is firstly introduced to classify degradation stages before predicting the RUL of bearings. Then we introduce a self-adaptive graph convolutional network (SAGCN) along with a self-attention mechanism in order to consider the correlation of features at different time points without using recurrent characteristics. Experimental results have demonstrated that the proposed method can accurately predict the RUL with a minimum average root mean squared error of 0.119, and outperforms existing data-driven methods, such as graph convolutional network, convolutional LSTM, convolutional neural network, and generative adversarial network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
刚刚
着急的飞槐完成签到,获得积分10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
abaaba完成签到,获得积分10
1秒前
Mic应助科研通管家采纳,获得50
1秒前
Orange应助科研通管家采纳,获得30
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
dyc0222应助科研通管家采纳,获得30
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
赤侯发布了新的文献求助10
1秒前
luckpupa发布了新的文献求助10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
1秒前
orixero应助科研通管家采纳,获得10
1秒前
YJ完成签到,获得积分10
1秒前
李健应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助wling采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得30
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
xixi应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616