Toward Teachable Autotelic Agents

计算机科学 钥匙(锁) 导师 自主代理人 人机交互 人工智能 发现学习 数据科学 知识管理 心理学 数学教育 计算机安全 程序设计语言
作者
Olivier Sigaud,Ahmed Akakzia,Hugo Caselles-Dupré,Cédric Colas,Pierre-Yves Oudeyer,Mohamed Chétouani
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1070-1084 被引量:3
标识
DOI:10.1109/tcds.2022.3231731
摘要

Autonomous discovery and direct instruction are two distinct sources of learning in children but education sciences demonstrate that mixed approaches such as assisted discovery or guided play result in improved skill acquisition. In the field of Artificial Intelligence, these extremes respectively map to autonomous agents learning from their own signals and interactive learning agents fully taught by their teachers. In between should stand teachable autotelic agents (TAA): agents that learn from both internal and teaching signals to benefit from the higher efficiency of assisted discovery. Designing such agents will enable real-world non-expert users to orient the learning trajectories of agents towards their expectations. More fundamentally, this may also be a key step to build agents with human-level intelligence. This paper presents a roadmap towards the design of teachable autonomous agents. Building on developmental psychology and education sciences, we start by identifying key features enabling assisted discovery processes in child-tutor interactions. This leads to the production of a checklist of features that future TAA will need to demonstrate. The checklist allows us to precisely pinpoint the various limitations of current reinforcement learning agents and to identify the promising first steps towards TAA. It also shows the way forward by highlighting key research directions towards the design or autonomous agents that can be taught by ordinary people via natural pedagogy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助愫暮采纳,获得10
1秒前
阳光火车完成签到 ,获得积分10
1秒前
好好学习发布了新的文献求助10
1秒前
2秒前
王贺发布了新的文献求助10
2秒前
深情安青应助缓慢笑柳采纳,获得10
2秒前
乐乐应助古凊采纳,获得10
3秒前
3秒前
东方黎云发布了新的文献求助10
3秒前
lss完成签到,获得积分10
4秒前
漓一完成签到 ,获得积分10
4秒前
dudu完成签到,获得积分10
5秒前
满意草丛发布了新的文献求助10
7秒前
科研通AI5应助LT采纳,获得50
8秒前
香蕉觅云应助雨墨采纳,获得10
8秒前
光纤陀螺发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
Eraser完成签到,获得积分10
12秒前
12秒前
王贺完成签到,获得积分10
14秒前
古凊发布了新的文献求助10
14秒前
15秒前
16秒前
17秒前
salmonella发布了新的文献求助10
17秒前
满意草丛完成签到,获得积分10
18秒前
超帅冷雪发布了新的文献求助10
19秒前
19秒前
绿小豆发布了新的文献求助30
20秒前
20秒前
21秒前
黄芪完成签到,获得积分10
22秒前
标致绿柏发布了新的文献求助50
23秒前
巧可脆脆发布了新的文献求助10
23秒前
破釜沉舟发布了新的文献求助10
24秒前
楠屿完成签到,获得积分10
24秒前
渔夫完成签到,获得积分10
26秒前
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4213735
求助须知:如何正确求助?哪些是违规求助? 3747966
关于积分的说明 11791481
捐赠科研通 3414820
什么是DOI,文献DOI怎么找? 1874066
邀请新用户注册赠送积分活动 928285
科研通“疑难数据库(出版商)”最低求助积分说明 837546