光催化
异质结
光电流
材料科学
罗丹明B
半导体
可见光谱
纳米技术
化学工程
光电子学
光化学
化学
催化作用
生物化学
工程类
作者
Hongwei Huang,Ying He,Xin Du,Paul K. Chu,Yihe Zhang
标识
DOI:10.1021/acssuschemeng.5b01038
摘要
Development of core/shell heterostructures and semiconductor p–n junctions is of great concern for environmental and energy applications. Herein, we develop a facile in situ deposition route for fabrication of a BiVO4/BiOI composite integrating both the core/shell heterostructure and semiconductor p–n junction at room temperature. In the BiVO4/BiOI core/shell heterostructure, the BiOI nanosheets are evenly assembled on the surface of the BiVO4 cores. The photocatalytic performance is evaluated by monitoring the degradation of the dye model Rhodamine B (RhB), colorless contaminant phenol, and photocurrent generation under visible-light irradiation. The heterostructured BiVO4/BiOI core/shell photocatalyst shows drastically enhanced photocatalysis properties compared to the pristine BiVO4 and BiOI. This remarkable enhancement is attributed to the intimate interfacial interactions derived from the core/shell heterostructure and formation of the p–n junction between the p-type BiOI and n-type BiVO4. Separation and transfer of photogenerated electron–hole pairs are hence greatly facilitated, thereby resulting in the improved photocatalytic performance as confirmed by electrochemical, photoelectrochemical, radicals trapping, and superoxide radical (•O2–) quantification results. Moreover, the core/shell BiVO4/BiOI also displays high photochemical stability. This work sheds new light on the construction of high-performance photocatalysts with core/shell heterostructures and matchable band structures in a simple and efficient way.
科研通智能强力驱动
Strongly Powered by AbleSci AI