Classifying, Measuring, and Predicting Users’ Overall Active Behavior on Social Networking Sites

连续性 可靠性(半导体) 德尔菲法 计算机科学 心理学 社会化媒体 知识管理 数据科学 社会心理学 万维网 人工智能 量子力学 物理 功率(物理)
作者
Aihui Chen,Yaobin Lu,Patrick Y.K. Chau,Sumeet Gupta
出处
期刊:Journal of Management Information Systems [Taylor & Francis]
卷期号:31 (3): 213-253 被引量:115
标识
DOI:10.1080/07421222.2014.995557
摘要

Although understanding the role of users' overall active behavior on a social networking site (SNS) is of significant importance for both theory and practice, the complexity and difficulty involved in measuring such behavior has inhibited research attention. To understand users' active behaviors on an SNS, it is important that we identify and classify various types of online behaviors before measuring them. In this paper we holistically examine users' active behaviors on an SNS. Toward this end, we conduct three studies. First, we classify active behaviors on an SNS into four categories using the Delphi method. Then, we develop a measurement model and validate it using the data collected from an online survey of 477 SNS users. The measures of the developed instrument exhibit satisfactory reliability and validity and are used as indicators of the latent constructs. This instrument is then used in a predictive model based on commitment theory and tested using data from 1,242 responses. The results of data analysis suggest that affective commitment and continuance commitment are good predictors of overall active behavior on an SNS. This study complements the existing research on social media, cocreation, and social commerce. Most important, this study provides a theoretically sound measurement instrument that addresses the complex characteristic of overall active behavior on an SNS and which should be useful for future research. The findings of this study have important implications for practice as they highlight managing and stimulating users' active behaviors on an SNS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HUSHIYI发布了新的文献求助10
1秒前
1秒前
1秒前
酒酿圆子发布了新的文献求助10
2秒前
SEBR完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
mypang发布了新的文献求助10
3秒前
独特跳跳糖完成签到 ,获得积分10
4秒前
smiles发布了新的文献求助10
4秒前
游才发布了新的文献求助10
5秒前
JamesPei应助施不评采纳,获得10
5秒前
可爱的函函应助哎呀采纳,获得10
5秒前
-J.e-发布了新的文献求助10
5秒前
5秒前
6秒前
危机的白柏完成签到 ,获得积分10
6秒前
含蓄可冥完成签到,获得积分10
7秒前
小蘑菇应助绿色催化采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
mumu发布了新的文献求助10
10秒前
cc发布了新的文献求助10
10秒前
usuila发布了新的文献求助10
10秒前
科研通AI5应助鱼鱼鱼采纳,获得10
10秒前
Okpooko完成签到,获得积分10
10秒前
嘉林完成签到,获得积分10
11秒前
唐糖发布了新的文献求助10
11秒前
Yucorn完成签到 ,获得积分10
11秒前
辛巴先生完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072516
求助须知:如何正确求助?哪些是违规求助? 4292847
关于积分的说明 13376248
捐赠科研通 4114022
什么是DOI,文献DOI怎么找? 2252800
邀请新用户注册赠送积分活动 1257561
关于科研通互助平台的介绍 1190352