Accelerated discovery of stable spinels in energy systems via machine learning

材料科学 尖晶石 光伏 半导体 计算机科学 纳米技术 带隙 吞吐量 光电子学 工程物理 光伏系统 电气工程 物理 无线 工程类 冶金 电信
作者
Zhilong Wang,Haikuo Zhang,Jinjin Li
出处
期刊:Nano Energy [Elsevier BV]
卷期号:81: 105665-105665 被引量:45
标识
DOI:10.1016/j.nanoen.2020.105665
摘要

Discovery of new energy materials with thermal stability and special electro-optical properties has always been the goal and challenge of material science. As an important energy material, spinel has been widely used in the fields of photovoltaics, piezoelectric, catalysis, batteries, and thermoelectrics. However, there are many spinels with AB2X4 formula that have not been explored, especially for the ones with direct band gaps, which severely limit their applications. Here, we develop a target-driven method that uses machine learning (ML) to accelerate the ab initio predictions of unknown spinels from the periodic table of elements. Under this strategy, eight spinels with direct band gaps and thermal stabilities at room temperature are screened out successfully from 3880 unexplored spinels (CaAl2O4, CaGa2O4, SnGa2O4, CaAl2S4, CaGa2S4, CaAl2Se4, CaGa2Se4, CaAl2Te4). The screened spinels show good optoelectronic performance in the energy systems (thin-film solar cells, photocatalysts, etc.). Based on the XGBoost algorithm, a semiconductor classification model with strong structure-property relationship is established, with a high prediction accuracy of 91.2% and a low computational cost of a few milliseconds. The proposed target-driven approach shortens the research cycle of spinel screening by approximately 3.4 years and enables the discovery and design of a wide range of energy materials. Compared with traditional high-throughput material screening, the proposed method has potential applications in shortening the screening time and accelerating the development of material genomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏silence发布了新的文献求助10
3秒前
weizhi完成签到,获得积分10
3秒前
科研通AI2S应助fanghua采纳,获得10
5秒前
lily发布了新的文献求助10
6秒前
芊慧发布了新的文献求助10
7秒前
yyy完成签到,获得积分10
8秒前
竹子完成签到,获得积分10
10秒前
11秒前
Alanni完成签到 ,获得积分10
11秒前
15秒前
大鱼儿发布了新的文献求助30
20秒前
在水一方应助blueberry采纳,获得10
21秒前
21秒前
23秒前
田様应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
23秒前
思源应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
朝暮应助科研通管家采纳,获得30
23秒前
23秒前
zmnzmnzmn应助科研通管家采纳,获得10
23秒前
zmnzmnzmn应助科研通管家采纳,获得10
23秒前
23秒前
lily完成签到,获得积分10
25秒前
siagen完成签到,获得积分10
25秒前
27秒前
fanghua完成签到,获得积分20
27秒前
gao_yiyi应助大鱼儿采纳,获得10
29秒前
30秒前
andrele应助Siliang采纳,获得10
34秒前
blueberry发布了新的文献求助10
35秒前
酷波er应助iman采纳,获得10
35秒前
跳跳虎发布了新的文献求助10
37秒前
上官若男应助ray采纳,获得10
38秒前
blind完成签到,获得积分10
40秒前
小鸣完成签到 ,获得积分10
41秒前
Llllll发布了新的文献求助40
41秒前
FashionBoy应助犹豫的夏波采纳,获得10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778908
求助须知:如何正确求助?哪些是违规求助? 3324476
关于积分的说明 10218591
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440