Machine learning pipeline for battery state-of-health estimation

电池(电) 计算机科学 国家(计算机科学) 健康状况 估计 管道(软件) 工程类 系统工程 功率(物理) 算法 操作系统 量子力学 物理
作者
Darius Roman,Saurabh Saxena,Valentin Robu,Michael Pecht,David Flynn
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (5): 447-456 被引量:399
标识
DOI:10.1038/s42256-021-00312-3
摘要

Lithium-ion batteries are ubiquitous in applications ranging from portable electronics to electric vehicles. Irrespective of the application, reliable real-time estimation of battery state of health (SOH) by on-board computers is crucial to the safe operation of the battery, ultimately safeguarding asset integrity. In this Article, we design and evaluate a machine learning pipeline for estimation of battery capacity fade—a metric of battery health—on 179 cells cycled under various conditions. The pipeline estimates battery SOH with an associated confidence interval by using two parametric and two non-parametric algorithms. Using segments of charge voltage and current curves, the pipeline engineers 30 features, performs automatic feature selection and calibrates the algorithms. When deployed on cells operated under the fast-charging protocol, the best model achieves a root-mean-squared error of 0.45%. This work provides insights into the design of scalable data-driven models for battery SOH estimation, emphasizing the value of confidence bounds around the prediction. The pipeline methodology combines experimental data with machine learning modelling and could be applied to other critical components that require real-time estimation of SOH. Rechargeable lithium-ion batteries play a crucial role in many modern-day applications, including portable electronics and electric vehicles, but they degrade over time. To ensure safe operation, a battery’s ‘state of health’ should be monitored in real time, and this machine learning pipeline, tested on a variety of charging conditions, can provide such an online estimation of battery state of health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
呐呐完成签到,获得积分10
1秒前
原子完成签到,获得积分10
1秒前
一汪完成签到,获得积分10
1秒前
小火孩发布了新的文献求助10
2秒前
飘逸宛丝完成签到,获得积分10
2秒前
xzx7086发布了新的文献求助10
2秒前
稳重中心完成签到,获得积分10
2秒前
lyt完成签到,获得积分10
3秒前
SYLH应助X_Melanie采纳,获得10
3秒前
shijiaomu发布了新的文献求助20
4秒前
5秒前
慕青应助柿子吖采纳,获得10
5秒前
英吉利25发布了新的文献求助10
5秒前
arizaki7应助YAMO一采纳,获得10
6秒前
取昵称好难完成签到,获得积分10
6秒前
不安钢铁侠完成签到,获得积分10
6秒前
zeng发布了新的文献求助50
7秒前
wjj119完成签到 ,获得积分10
7秒前
害羞猫咪完成签到,获得积分10
7秒前
司空蓝完成签到,获得积分10
7秒前
8秒前
8秒前
ddd完成签到,获得积分10
8秒前
8秒前
hxx完成签到,获得积分10
9秒前
山羊8201完成签到,获得积分10
10秒前
10秒前
宋嬴一发布了新的文献求助10
10秒前
Zhengyiwu完成签到,获得积分10
10秒前
赘婿应助Jieeeee采纳,获得10
10秒前
liu完成签到,获得积分10
10秒前
11秒前
忆寒完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
高贵的小天鹅完成签到,获得积分10
12秒前
567完成签到,获得积分10
13秒前
gxl完成签到,获得积分10
13秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Learning to Listen, Listening to Learn: Music Perception and the Psychology of Enculturation 700
全球膝关节骨性关节炎市场研究报告 555
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
ACSM's guidelines for exercise testing and prescription, 12 ed 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3895247
求助须知:如何正确求助?哪些是违规求助? 3439120
关于积分的说明 10810635
捐赠科研通 3163993
什么是DOI,文献DOI怎么找? 1747909
邀请新用户注册赠送积分活动 844308
科研通“疑难数据库(出版商)”最低求助积分说明 787896