已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling the ecological status response of rivers to multiple stressors using machine learning: A comparison of environmental DNA metabarcoding and morphological data

环境DNA 支持向量机 生态学 环境数据 环境监测 数据集 压力源 机器学习 环境科学 数据挖掘 计算机科学 人工智能 生物 生物多样性 神经科学
作者
Juntao Fan,Shuping Wang,Hong Li,Zhenguang Yan,Yizhang Zhang,Xin Zheng,Pengyuan Wang
出处
期刊:Water Research [Elsevier BV]
卷期号:183: 116004-116004 被引量:50
标识
DOI:10.1016/j.watres.2020.116004
摘要

Understanding the ecological status response of rivers to multiple stressors is a precondition for river restoration and management. However, this requires the collection of appropriate data, including environmental variables and the status of aquatic organisms, and analysis via a suitable model that captures the nonlinear relationships between ecological status and various stressors. The morphological approach has been the standard data collection method employed for establishing the status of aquatic organisms. However, this approach is very laborious and restricted to a specific set of organisms. Recently, an environmental DNA (eDNA) metabarcoding data approach has been developed that is far more efficient than the morphological approach and potentially applicable to an unlimited set of organisms. However, it remains unclear how well eDNA metabarcoding data reflects the impacts of environmental stressors on aquatic ecosystems compared with morphological data, which is essential for clarifying the potential applications of eDNA metabarcoding data in the ecological monitoring and management of rivers. The present work addresses this issue by modeling organism diversity based on three indices with respect to multiple environmental variables in both the catchment and reach scales. This is done by corresponding support vector machine (SVM) models constructed from eDNA metabarcoding and morphological data on 24 sampling locations in the Taizi River basin, China. According to the mean absolute percent error (MAPE) between the measured diversity index values and the index values predicted by the SVM models, the SVM models constructed from eDNA metabarcoding data (MAPE = 3.87) provide more accurate predictions than the SVM models constructed from morphological data (MAPE = 28.36), revealing that the eDNA metabarcoding data better reflects environmental conditions. In addition, the sensitivity of SVM model predictions of the ecological indices for both catchment-scale and reach-scale stressors is evaluated, and the stressors having the greatest impact on the ecological status of rivers are identified. The results demonstrate that the ecological status of rivers is more sensitive to environmental stressors at the reach scale than to stressors at the catchment scale. Therefore, our study is helpful in exploring the potential applications of eDNA metabarcoding data and SVM modeling in the ecological monitoring and management of rivers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Baihuashan发布了新的文献求助10
1秒前
2秒前
3秒前
sima发布了新的文献求助10
3秒前
3秒前
笨笨电灯胆完成签到,获得积分10
4秒前
筱奇发布了新的文献求助10
5秒前
6秒前
情怀应助乐观的非笑采纳,获得10
6秒前
8秒前
huangbing123发布了新的文献求助10
8秒前
上官若男应助筱奇采纳,获得10
9秒前
9秒前
年少丶完成签到,获得积分10
9秒前
utopia应助北北北采纳,获得10
9秒前
cola发布了新的文献求助10
11秒前
zx_p完成签到,获得积分10
12秒前
CipherSage应助吞金采纳,获得10
13秒前
王博士完成签到,获得积分10
13秒前
zyz924发布了新的文献求助10
13秒前
15秒前
16秒前
沼泽应助jacobinary采纳,获得10
17秒前
研友_VZG7GZ应助Baihuashan采纳,获得10
17秒前
18秒前
慕染完成签到 ,获得积分10
18秒前
www完成签到,获得积分10
18秒前
超级幻然完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
顺利的飞荷完成签到,获得积分0
22秒前
22秒前
Asofi发布了新的文献求助10
23秒前
慕染关注了科研通微信公众号
23秒前
23秒前
Emmalee应助律笺文采纳,获得10
23秒前
04liqian发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4483062
求助须知:如何正确求助?哪些是违规求助? 3939098
关于积分的说明 12218897
捐赠科研通 3594317
什么是DOI,文献DOI怎么找? 1976701
邀请新用户注册赠送积分活动 1013825
科研通“疑难数据库(出版商)”最低求助积分说明 906901