Task-based evaluation of deep image super-resolution in medical imaging

计算机科学 人工智能 超分辨率 计算机视觉 图像(数学) 分辨率(逻辑) 深度学习 图像分辨率 高分辨率 医学影像学 卷积神经网络 图像质量 低分辨率
作者
Varun A. Kelkar,Xiaohui Zhang,Jason L. Granstedt,Hua Li,Mark A. Anastasio
标识
DOI:10.1117/12.2582011
摘要

In medical imaging, it is sometimes desirable to acquire high resolution images that reveal anatomical and physiological information to support clinical practice such as diagnosis and image-guided therapies. However, for certain imaging modalities (i.e., magnetic resonance imaging (MRI)), acquiring high resolution images can be a very time-consuming and resource-intensive process. One popular solution recently developed is to create a high resolution version of the acquired low-resolution image by use of deep image super-resolution (DL-SR) methods. It has been demonstrated in literature that deep super-resolution networks can improve the image quality measured by traditional physical metrics such as mean square error (MSE), structural similarity index metric (SSIM) and peak signal-to-noise ratio (PSNR). However, it is not clear how well these metrics quantify the diagnostic value of the generated SR images. Here, a task-based super-resolution (SR) image quality assessment is conducted to quantitatively evaluate the efficiency and performance of DL-SR methods. A Rayleigh task is designed to investigate the impact of signal length and super-resolution network complexity on s binary detection performance. Numerical observers (NOs) including the regularized Hotelling Observer (RHO), the anthropomorphic Gabor channelized observers (Gabor CHO) and the ResNet-approximated ideal observer (ResNet-IO) are implemented to assess the Rayleigh task performance. For the datasets considered in this study, little to no improvement in task performance of the considered NOs due to the considered DL-SR SR networks, despite substantial improvement in traditional IQ metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CYAA完成签到,获得积分10
刚刚
Alex应助奋斗的梦松采纳,获得10
1秒前
Auditor完成签到 ,获得积分10
2秒前
2秒前
CodeCraft应助123采纳,获得10
5秒前
lyk关闭了lyk文献求助
6秒前
7秒前
糊涂一时发布了新的文献求助10
7秒前
9秒前
10秒前
DAYTOY完成签到,获得积分10
10秒前
11秒前
GAS完成签到,获得积分10
12秒前
刘笑笑发布了新的文献求助10
12秒前
冰魂应助小王采纳,获得20
13秒前
gggggd完成签到,获得积分10
14秒前
14秒前
fhz发布了新的文献求助10
15秒前
果子发布了新的文献求助10
15秒前
小熊熊完成签到,获得积分10
15秒前
wjsownbo发布了新的文献求助10
16秒前
星期八完成签到,获得积分10
17秒前
一朵小鲜花儿完成签到,获得积分10
18秒前
18秒前
欣慰晓兰完成签到 ,获得积分20
19秒前
chrysan发布了新的文献求助10
20秒前
ShengjuChen完成签到 ,获得积分10
21秒前
22秒前
22秒前
123发布了新的文献求助10
22秒前
fenmiao完成签到,获得积分10
23秒前
Jasper应助自信的以旋采纳,获得10
25秒前
善学以致用应助ardejiang采纳,获得10
25秒前
qsh完成签到 ,获得积分10
26秒前
Ying发布了新的文献求助30
27秒前
认真的人完成签到,获得积分10
31秒前
31秒前
32秒前
123完成签到,获得积分10
34秒前
生动绫发布了新的文献求助10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783816
求助须知:如何正确求助?哪些是违规求助? 3329060
关于积分的说明 10239739
捐赠科研通 3044482
什么是DOI,文献DOI怎么找? 1671054
邀请新用户注册赠送积分活动 800101
科研通“疑难数据库(出版商)”最低求助积分说明 759192