Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems

计算机科学 水准点(测量) 数学优化 启发式 理论(学习稳定性) 全局优化 启发式 群体行为 范围(计算机科学) 算法 人工智能 机器学习 数学 大地测量学 程序设计语言 地理
作者
Malik Braik
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:174: 114685-114685 被引量:296
标识
DOI:10.1016/j.eswa.2021.114685
摘要

This paper presents a novel meta-heuristic algorithm named Chameleon Swarm Algorithm (CSA) for solving global numerical optimization problems. The base inspiration for CSA is the dynamic behavior of chameleons when navigating and hunting for food sources on trees, deserts and near swamps. This algorithm mathematically models and implements the behavioral steps of chameleons in their search for food, including their behavior in rotating their eyes to a nearly 360°scope of vision to locate prey and grab prey using their sticky tongues that launch at high speed. These foraging mechanisms practiced by chameleons eventually lead to feasible solutions when applied to address optimization problems. The stability of the proposed algorithm was assessed on sixty-seven benchmark test functions and the performance was examined using several evaluation measures. These test functions involve unimodal, multimodal, hybrid and composition functions with different levels of complexity. An extensive comparative study was conducted to demonstrate the efficacy of CSA over other meta-heuristic algorithms in terms of optimization accuracy. The applicability of the proposed algorithm in reliably addressing real-world problems was demonstrated in solving five constrained and computationally expensive engineering design problems. The overall results of CSA show that it offered a favorable global or near global solution and better performance compared to other meta-heuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
momo发布了新的文献求助10
1秒前
2秒前
学术疯子发布了新的文献求助10
2秒前
深情安青应助友好的半仙采纳,获得10
2秒前
3秒前
李健应助左左采纳,获得10
5秒前
上官若男应助cherish采纳,获得10
5秒前
徐丑发布了新的文献求助30
5秒前
程莉发布了新的文献求助10
7秒前
ppwl发布了新的文献求助10
7秒前
慕青应助rayce采纳,获得10
8秒前
欣欣发布了新的文献求助10
8秒前
9秒前
9秒前
Akim应助韩先生采纳,获得10
9秒前
善学以致用应助吕小布采纳,获得10
11秒前
忧子忘发布了新的文献求助10
11秒前
3D完成签到,获得积分10
12秒前
HL发布了新的文献求助10
13秒前
15秒前
情怀应助生动的电脑采纳,获得10
15秒前
15秒前
16秒前
16秒前
科研通AI2S应助程莉采纳,获得10
18秒前
power发布了新的文献求助30
19秒前
左左发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
研友_xnEOX8完成签到,获得积分20
25秒前
26秒前
土豆酱发布了新的文献求助10
26秒前
韩先生发布了新的文献求助10
27秒前
慕青应助星移采纳,获得10
27秒前
29秒前
研友_xnEOX8发布了新的文献求助10
29秒前
左左完成签到,获得积分20
30秒前
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806811
求助须知:如何正确求助?哪些是违规求助? 3351524
关于积分的说明 10354611
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684489
邀请新用户注册赠送积分活动 809716
科研通“疑难数据库(出版商)”最低求助积分说明 765635