Adaptive neural PD controllers for mobile manipulator trajectory tracking

PID控制器 控制理论(社会学) 沉降时间 超调(微波通信) 计算机科学 控制器(灌溉) 控制工程 跟踪误差 人工神经网络 扩展卡尔曼滤波器 弹道 卡尔曼滤波器 人工智能 工程类 阶跃响应 控制(管理) 天文 物理 生物 电信 温度控制 农学
作者
Jesús Hernández-Barragán,Jorge D. Rios,Javier Gómez-Avila,Nancy Arana‐Daniel,Carlos López-Franco,Alma Y. Alanís
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:7: e393-e393 被引量:6
标识
DOI:10.7717/peerj-cs.393
摘要

Artificial intelligence techniques have been used in the industry to control complex systems; among these proposals, adaptive Proportional, Integrative, Derivative (PID) controllers are intelligent versions of the most used controller in the industry. This work presents an adaptive neuron PD controller and a multilayer neural PD controller for position tracking of a mobile manipulator. Both controllers are trained by an extended Kalman filter (EKF) algorithm. Neural networks trained with the EKF algorithm show faster learning speeds and convergence times than the training based on backpropagation. The integrative term in PID controllers eliminates the steady-state error, but it provokes oscillations and overshoot. Moreover, the cumulative error in the integral action may produce windup effects such as high settling time, poor performance, and instability. The proposed neural PD controllers adjust their gains dynamically, which eliminates the steady-state error. Then, the integrative term is not required, and oscillations and overshot are highly reduced. Removing the integral part also eliminates the need for anti-windup methodologies to deal with the windup effects. Mobile manipulators are popular due to their mobile capability combined with a dexterous manipulation capability, which gives them the potential for many industrial applications. Applicability of the proposed adaptive neural controllers is presented by simulating experimental results on a KUKA Youbot mobile manipulator, presenting different tests and comparisons with the conventional PID controller and an existing adaptive neuron PID controller.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咳炎泥马发布了新的文献求助10
1秒前
Eleven完成签到,获得积分10
1秒前
Akim应助莉莉子采纳,获得10
2秒前
2秒前
3秒前
浮游应助kirito1211采纳,获得10
3秒前
烟花应助SOUTHTHTH采纳,获得30
3秒前
LaTeXer应助超级的香菇采纳,获得30
5秒前
852应助超级的香菇采纳,获得30
5秒前
852应助超级的香菇采纳,获得10
5秒前
5秒前
6秒前
在水一方应助光亮映波采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
祁乐安发布了新的文献求助10
7秒前
绝对草草完成签到,获得积分10
8秒前
8秒前
科研通AI5应助饭饭采纳,获得10
9秒前
Even发布了新的文献求助10
9秒前
CAE上路到上吊完成签到,获得积分10
9秒前
戴胜发布了新的文献求助10
10秒前
11秒前
orange完成签到,获得积分10
11秒前
12秒前
Sy发布了新的文献求助10
12秒前
大个应助红烧豆腐采纳,获得10
14秒前
莉莉子发布了新的文献求助10
14秒前
15秒前
深情安青应助麻怀芝采纳,获得10
15秒前
今后应助伶俐灵采纳,获得10
15秒前
11完成签到,获得积分10
16秒前
在水一方应助777采纳,获得10
16秒前
16秒前
韭黄发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4854965
求助须知:如何正确求助?哪些是违规求助? 4152160
关于积分的说明 12866323
捐赠科研通 3901627
什么是DOI,文献DOI怎么找? 2143876
邀请新用户注册赠送积分活动 1163484
关于科研通互助平台的介绍 1064051