A multi-energy load prediction model based on deep multi-task learning and ensemble approach for regional integrated energy systems

计算机科学 人工智能 集成学习 人工神经网络 机器学习 能量(信号处理) 任务(项目管理) 能源消耗 Boosting(机器学习) 工程类 统计 数学 系统工程 电气工程
作者
Xuan Wang,Shouxiang Wang,Qianyu Zhao,Shaomin Wang,Fu Liwei
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:126: 106583-106583 被引量:118
标识
DOI:10.1016/j.ijepes.2020.106583
摘要

Regional integrated energy system (RIES) plays an important role in the energy economy because of its advantages such as low environmental pollution and high efficiency cascade energy utilization. In order to ensure the operational efficiency and reliability of RIES, the accurate prediction of energy demand has become a crucial task. To this end, this paper proposes a novel multi-energy load prediction model based on deep multi-task learning and ensemble approach for RIES. Its novelty lies in the following four aspects: (1) considering the high-dimensional temporal and spatial features, a hybrid network based on convolutional neural network (CNN) and gated recurrent unit (GRU) is utilized to extract high-dimensional abstract features and model nonlinear time series dynamically; (2) to meet the prediction requirements of various loads, three GRU networks with different structures are designed, which can adapt to different types of loads with various fluctuations; (3) considering the coupling relations, an enhanced multi-task learning with homoscedastic uncertainty (HUMTL) is proposed, which can better make the prediction tasks of various loads achieve the optimum simultaneously; (4) to realize the sharing of learning results of different structure networks, ensemble approach based on gradient boosting regressor tree (GBRT) is adopted, which can make a weighted summary by the prediction results of various energy features learning in different degrees. Numerical example shows that the proposed model can dig the coupling relations among various energy systems deeper, explore the temporal and spatial correlation of multi-energy loads further, and it has higher prediction accuracy and better prediction applicability than other current advanced models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柚子完成签到,获得积分10
2秒前
2秒前
zenabia完成签到 ,获得积分10
4秒前
柚子发布了新的文献求助30
5秒前
CHRIS发布了新的文献求助10
6秒前
风衣拖地完成签到 ,获得积分10
9秒前
俭朴的一曲完成签到,获得积分10
11秒前
深情安青应助缥莲采纳,获得10
11秒前
11秒前
wanci应助柚子采纳,获得10
14秒前
佳期如梦完成签到 ,获得积分10
19秒前
zh完成签到 ,获得积分0
23秒前
是真的完成签到 ,获得积分10
31秒前
xdy完成签到 ,获得积分10
33秒前
roundtree完成签到 ,获得积分0
34秒前
天天开心完成签到 ,获得积分10
38秒前
wangsai0532完成签到,获得积分10
39秒前
Sofia完成签到 ,获得积分10
44秒前
科研通AI2S应助小叙采纳,获得10
51秒前
笑点低的项链完成签到 ,获得积分10
52秒前
瓦罐完成签到 ,获得积分10
55秒前
飞云完成签到 ,获得积分10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
1分钟前
李霞完成签到 ,获得积分10
1分钟前
1分钟前
不想干活应助小叙采纳,获得10
1分钟前
chy完成签到,获得积分10
1分钟前
西莫cemo完成签到,获得积分10
1分钟前
北风应助小叙采纳,获得10
1分钟前
wenhuanwenxian完成签到 ,获得积分10
1分钟前
RayHey应助chy采纳,获得20
1分钟前
刻苦的新烟完成签到 ,获得积分10
1分钟前
li8888li8888完成签到 ,获得积分10
1分钟前
Yonina完成签到,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4162585
求助须知:如何正确求助?哪些是违规求助? 3698126
关于积分的说明 11675141
捐赠科研通 3388455
什么是DOI,文献DOI怎么找? 1858167
邀请新用户注册赠送积分活动 918847
科研通“疑难数据库(出版商)”最低求助积分说明 831703