Partially View-aligned Representation Learning with Noise-robust Contrastive Loss

计算机科学 人工智能 噪音(视频) 代表(政治) 对比度(视觉) 模式识别(心理学) 聚类分析 采样(信号处理) 特征学习 机器学习 构造(python库) 图像(数学) 计算机视觉 滤波器(信号处理) 程序设计语言 法学 政治 政治学
作者
Mouxing Yang,Yunfan Li,Zhenyu Huang,Zitao Liu,Peng Hu,Xi Peng
标识
DOI:10.1109/cvpr46437.2021.00119
摘要

In real-world applications, it is common that only a portion of data is aligned across views due to spatial, temporal, or spatiotemporal asynchronism, thus leading to the so-called Partially View-aligned Problem (PVP). To solve such a less-touched problem without the help of labels, we propose simultaneously learning representation and aligning data using a noise-robust contrastive loss. In brief, for each sample from one view, our method aims to identify its within-category counterparts from other views, and thus the cross-view correspondence could be established. As the contrastive learning needs data pairs as input, we construct positive pairs using the known correspondences and negative pairs using random sampling. To alleviate or even eliminate the influence of the false negatives caused by random sampling, we propose a noise-robust contrastive loss that could adaptively prevent the false negatives from dominating the network optimization. To the best of our knowledge, this could be the first successful attempt of enabling contrastive learning robust to noisy labels. In fact, this work might remarkably enrich the learning paradigm with noisy labels. More specifically, the traditional noisy labels are defined as incorrect annotations for the supervised tasks such as classification. In contrast, this work proposes that the view correspondence might be false, which is remarkably different from the widely-accepted definition of noisy label. Extensive experiments show the promising performance of our method comparing with 10 state-of-the-art multi-view approaches in the clustering and classification tasks. The code will be publicly released at https://pengxi.me.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
亦承梦发布了新的文献求助10
1秒前
Akim应助阿莫仙采纳,获得10
1秒前
亮liang完成签到,获得积分10
3秒前
3秒前
luoye完成签到,获得积分10
3秒前
傅英俊发布了新的文献求助10
4秒前
4秒前
完美星落完成签到,获得积分10
5秒前
5秒前
7秒前
木子蕊完成签到,获得积分20
7秒前
搞份炸鸡778完成签到,获得积分10
7秒前
7秒前
胡胡完成签到 ,获得积分10
9秒前
ss完成签到 ,获得积分10
9秒前
YYMM发布了新的文献求助10
9秒前
tqim发布了新的文献求助10
10秒前
傅英俊完成签到,获得积分10
10秒前
沉溺发布了新的文献求助10
10秒前
11秒前
12秒前
Treasure发布了新的文献求助10
13秒前
科研通AI5应助独特的泽洋采纳,获得10
13秒前
77发布了新的文献求助20
13秒前
香蕉觅云应助环游世界采纳,获得10
13秒前
啾v咪完成签到 ,获得积分10
15秒前
kong发布了新的文献求助10
15秒前
15秒前
拉长的南松完成签到 ,获得积分10
16秒前
18秒前
yy完成签到,获得积分10
18秒前
困敦发布了新的文献求助10
18秒前
19秒前
Orange应助Zoe采纳,获得10
19秒前
20秒前
20秒前
21秒前
Memory完成签到,获得积分10
21秒前
syj完成签到,获得积分10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814868
求助须知:如何正确求助?哪些是违规求助? 3358972
关于积分的说明 10398999
捐赠科研通 3076429
什么是DOI,文献DOI怎么找? 1689822
邀请新用户注册赠送积分活动 813323
科研通“疑难数据库(出版商)”最低求助积分说明 767599