Quantum-enhanced nonlinear microscopy

显微镜 显微镜 光子 光学 随机性 噪音(视频) 物理 拉曼光谱 散粒噪声 量子极限 量子噪声 信噪比(成像) 量子 探测器 量子力学 计算机科学 数学 人工智能 图像(数学) 统计
作者
Catxere A. Casacio,Lars S. Madsen,Alex Terrasson,Muhammad Waleed,Kai Barnscheidt,Boris Hage,Michael A. Taylor,Warwick P. Bowen
出处
期刊:Nature [Nature Portfolio]
卷期号:594 (7862): 201-206 被引量:213
标识
DOI:10.1038/s41586-021-03528-w
摘要

The performance of light microscopes is limited by the stochastic nature of light, which exists in discrete packets of energy known as photons. Randomness in the times that photons are detected introduces shot noise, which fundamentally constrains sensitivity, resolution and speed1. Although the long-established solution to this problem is to increase the intensity of the illumination light, this is not always possible when investigating living systems, because bright lasers can severely disturb biological processes2–4. Theory predicts that biological imaging may be improved without increasing light intensity by using quantum photon correlations1,5. Here we experimentally show that quantum correlations allow a signal-to-noise ratio beyond the photodamage limit of conventional microscopy. Our microscope is a coherent Raman microscope that offers subwavelength resolution and incorporates bright quantum correlated illumination. The correlations allow imaging of molecular bonds within a cell with a 35 per cent improved signal-to-noise ratio compared with conventional microscopy, corresponding to a 14 per cent improvement in concentration sensitivity. This enables the observation of biological structures that would not otherwise be resolved. Coherent Raman microscopes allow highly selective biomolecular fingerprinting in unlabelled specimens6,7, but photodamage is a major roadblock for many applications8,9. By showing that the photodamage limit can be overcome, our work will enable order-of-magnitude improvements in the signal-to-noise ratio and the imaging speed. A quantum microscope obtains signal-to-noise beyond the photodamage limits of conventional microscopy, revealing biological structures within cells that would not otherwise be resolved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
公西香露完成签到,获得积分20
3秒前
文献看不懂应助尔蝶采纳,获得10
4秒前
公西香露发布了新的文献求助10
6秒前
Hanayu完成签到 ,获得积分10
6秒前
yudabaoer完成签到,获得积分10
7秒前
苗条大叔发布了新的文献求助10
7秒前
大饼大饼发布了新的文献求助10
8秒前
平淡萤完成签到,获得积分10
10秒前
10秒前
66完成签到 ,获得积分10
14秒前
WVc完成签到 ,获得积分10
17秒前
17秒前
17秒前
22秒前
24秒前
26秒前
27秒前
轻松的吐司完成签到,获得积分20
28秒前
32秒前
32秒前
cdercder应助kg采纳,获得10
32秒前
lipppu发布了新的文献求助10
33秒前
34秒前
笨鸟先飞发布了新的文献求助10
35秒前
小白一号完成签到 ,获得积分10
35秒前
顺利小陈发布了新的文献求助20
38秒前
共享精神应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
研友_VZG7GZ应助科研通管家采纳,获得10
40秒前
英姑应助科研通管家采纳,获得10
40秒前
pluto应助科研通管家采纳,获得20
40秒前
Singularity应助科研通管家采纳,获得10
40秒前
JamesPei应助科研通管家采纳,获得10
40秒前
木木发布了新的文献求助10
40秒前
Jasper应助科研通管家采纳,获得10
40秒前
李健应助科研通管家采纳,获得10
40秒前
小二郎应助科研通管家采纳,获得10
40秒前
今后应助科研通管家采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878