A review of irregular time series data handling with gated recurrent neural networks

计算机科学 缺少数据 循环神经网络 时间序列 单变量 人工智能 人工神经网络 机器学习 数据挖掘 插补(统计学) 系列(地层学) 深度学习 时态数据库 多元统计 生物 古生物学
作者
Philip B. Weerakody,Kok Wai Wong,Guanjin Wang,Wendell P. Ela
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:441: 161-178 被引量:237
标识
DOI:10.1016/j.neucom.2021.02.046
摘要

Irregular time series data is becoming increasingly prevalent with the growth of multi-sensor systems as well as the continued use of unstructured manual data recording mechanisms. Irregular data and the resulting missing values severely limit the data's ability to be analysed and modelled for classification and forecasting tasks. Often, conventional methods used for handling time series data introduce bias and make strong assumptions on the underlying data generation process, which can lead to poor model predictions. Traditional machine learning and deep learning methods, although at the forefront of data modelling, are at best compromised by irregular time series data sets and fail to model the temporal irregularity of incomplete time series. Gated recurrent neural networks (RNN), such as LSTM and GRU, have had outstanding success in sequential modelling, and have been applied in many application fields, including natural language processing. These models have become an obvious choice for time series modelling and a promising tool for handling irregular time series data. RNNs have a unique ability to be adapted to make effective use of missing value patterns, time intervals and complex temporal dependencies in irregular univariate and multivariate time series data. In this paper, we provide a systematic review of recent studies in which gated recurrent neural networks have been successfully applied to irregular time series data for prediction tasks within several fields, including medical, human activity recognition, traffic monitoring and environmental monitoring. The review highlights the two common approaches for handling irregular time series data: missing value imputation at the data pre-processing stage and modification of algorithms to directly handle missing values in the learning process. Reviewed models are confined to those that can address issues with irregular time series data and does not cover the broader range of models that deal more generally with sequences and regular time series. This paper aims to present the most effective techniques emerging within this branch of research as well as to identify remaining challenges, so that researchers may build upon this platform of work towards further novel techniques for handling irregular time series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxy发布了新的文献求助30
3秒前
3秒前
摇槐米完成签到,获得积分20
6秒前
lizzz完成签到,获得积分10
9秒前
宝宝关注了科研通微信公众号
11秒前
ZYQ完成签到 ,获得积分10
13秒前
Hailey完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
忧心的洙完成签到,获得积分10
20秒前
Hailey发布了新的文献求助10
21秒前
22秒前
是小杨呀发布了新的文献求助10
23秒前
扶余山本发布了新的文献求助10
23秒前
123456发布了新的文献求助10
24秒前
Owen应助颜如南采纳,获得10
26秒前
彭于彦祖应助邬紫依采纳,获得20
27秒前
zz发布了新的文献求助10
27秒前
修辞完成签到 ,获得积分10
27秒前
富士山来信完成签到,获得积分10
28秒前
28秒前
正直画笔完成签到 ,获得积分10
28秒前
29秒前
可可发布了新的文献求助10
33秒前
宝宝发布了新的文献求助10
34秒前
送不送书7完成签到 ,获得积分10
34秒前
英姑应助科研通管家采纳,获得10
34秒前
34秒前
大个应助科研通管家采纳,获得10
35秒前
天天快乐应助科研通管家采纳,获得30
35秒前
35秒前
LMC完成签到,获得积分20
37秒前
myyy完成签到 ,获得积分10
37秒前
38秒前
39秒前
微暖完成签到,获得积分10
43秒前
天天发布了新的文献求助10
43秒前
陈敏发布了新的文献求助10
44秒前
47秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841896
求助须知:如何正确求助?哪些是违规求助? 3383900
关于积分的说明 10531898
捐赠科研通 3104154
什么是DOI,文献DOI怎么找? 1709514
邀请新用户注册赠送积分活动 823302
科研通“疑难数据库(出版商)”最低求助积分说明 773878