Just another “Clever Hans”? Neural networks and FDG PET-CT to predict the outcome of patients with breast cancer

乳腺癌 医学 正电子发射断层摄影术 结果(博弈论) 癌症 放射科 内科学 数学 数理经济学
作者
Manuel Weber,David Kersting,Lale Umutlu,Michael Schäfers,Christoph Rischpler,Wolfgang P. Fendler,Irène Buvat,Ken Herrmann,Robert Seifert
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:48 (10): 3141-3150 被引量:35
标识
DOI:10.1007/s00259-021-05270-x
摘要

Abstract Background Manual quantification of the metabolic tumor volume (MTV) from whole-body 18 F-FDG PET/CT is time consuming and therefore usually not applied in clinical routine. It has been shown that neural networks might assist nuclear medicine physicians in such quantification tasks. However, little is known if such neural networks have to be designed for a specific type of cancer or whether they can be applied to various cancers. Therefore, the aim of this study was to evaluate the accuracy of a neural network in a cancer that was not used for its training. Methods Fifty consecutive breast cancer patients that underwent 18 F-FDG PET/CT were included in this retrospective analysis. The PET-Assisted Reporting System (PARS) prototype that uses a neural network trained on lymphoma and lung cancer 18 F-FDG PET/CT data had to detect pathological foci and determine their anatomical location. Consensus reads of two nuclear medicine physicians together with follow-up data served as diagnostic reference standard; 1072 18 F-FDG avid foci were manually segmented. The accuracy of the neural network was evaluated with regard to lesion detection, anatomical position determination, and total tumor volume quantification. Results If PERCIST measurable foci were regarded, the neural network displayed high per patient sensitivity and specificity in detecting suspicious 18 F-FDG foci (92%; CI = 79–97% and 98%; CI = 94–99%). If all FDG-avid foci were regarded, the sensitivity degraded (39%; CI = 30–50%). The localization accuracy was high for body part (98%; CI = 95–99%), region (88%; CI = 84–90%), and subregion (79%; CI = 74–84%). There was a high correlation of AI derived and manually segmented MTV ( R 2 = 0.91; p < 0.001). AI-derived whole-body MTV (HR = 1.275; CI = 1.208–1.713; p < 0.001) was a significant prognosticator for overall survival. AI-derived lymph node MTV (HR = 1.190; CI = 1.022–1.384; p = 0.025) and liver MTV (HR = 1.149; CI = 1.001–1.318; p = 0.048) were predictive for overall survival in a multivariate analysis. Conclusion Although trained on lymphoma and lung cancer, PARS showed good accuracy in the detection of PERCIST measurable lesions. Therefore, the neural network seems not prone to the clever Hans effect. However, the network has poor accuracy if all manually segmented lesions were used as reference standard. Both the whole body and organ-wise MTV were significant prognosticators of overall survival in advanced breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
whuyyz发布了新的文献求助10
3秒前
礽粥粥发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
田様应助板栗采纳,获得10
5秒前
6秒前
甜滋滋发布了新的文献求助10
6秒前
搬砖小韩关注了科研通微信公众号
6秒前
从容的翼发布了新的文献求助10
7秒前
haochen发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
lylyzhl发布了新的文献求助10
9秒前
轻松音响完成签到,获得积分10
9秒前
10秒前
微风完成签到,获得积分10
10秒前
mouse0821发布了新的文献求助10
11秒前
调皮寒凝发布了新的文献求助10
12秒前
活力香氛发布了新的文献求助10
12秒前
13秒前
平淡老九发布了新的文献求助10
14秒前
Jenaloe发布了新的文献求助10
14秒前
15秒前
Honghao发布了新的文献求助10
15秒前
16秒前
17秒前
科目三应助栗子采纳,获得20
17秒前
18秒前
从容的翼完成签到,获得积分10
18秒前
cyan发布了新的文献求助10
18秒前
在水一方应助guosheng采纳,获得10
18秒前
20秒前
20秒前
ares-gxd发布了新的文献求助10
20秒前
马上毕业完成签到 ,获得积分10
21秒前
mrzyfsci发布了新的文献求助10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4152674
求助须知:如何正确求助?哪些是违规求助? 3688680
关于积分的说明 11652884
捐赠科研通 3381167
什么是DOI,文献DOI怎么找? 1855603
邀请新用户注册赠送积分活动 917391
科研通“疑难数据库(出版商)”最低求助积分说明 830924