光学
相控阵
数值孔径
材料科学
探测器
光圈(计算机存储器)
空间光调制器
物理
计算机科学
傅里叶变换
电信
波长
量子力学
声学
天线(收音机)
作者
Nathan Dostart,Bohan Zhang,Michael Brand,Daniel Feldkhun,Miloš A. Popović,Kelvin Wagner
摘要
Active imaging and structured illumination originated in “bulk” optical systems: free-space beams controlled with lenses, spatial light modulators, gratings, and mirrors to structure the optical diffraction and direct the beams onto the target. Recently, optical phased arrays have been developed with the goal of replacing traditional bulk active imaging systems with integrated optical systems. In this paper, we demonstrate the first array of optical phased arrays forming a composite aperture. This composite aperture is used to implement a Fourier-based structured-illumination imaging system, where moving fringe patterns are projected on a target and a single integrating detector is used to reconstruct the spatial structure of the target from the time variation of the back-scattered light. We experimentally demonstrate proof-of-concept Fourier-basis imaging in 1D using a six-element array of optical phased arrays, which interfere pairwise to sample up to 11 different spatial Fourier components, and reconstruct a 1D delta-function target. This concept addresses a key complexity constraint in scaling up integrated photonic apertures by requiring only N elements in a sparse array to produce an image with N2 resolvable spots.
科研通智能强力驱动
Strongly Powered by AbleSci AI