盐酸四环素
光催化
盐酸盐
石墨氮化碳
氧气
化学工程
四环素
核化学
化学
有机化学
催化作用
生物化学
工程类
抗生素
作者
Yajing Yang,Zhaoyong Bian,Lu Zhang,Hui Wang
标识
DOI:10.1016/j.jhazmat.2021.127866
摘要
A novel Bi@BiOx(OH)y-modified oxidized g-C3N4 photocatalyst was successfully prepared via wet chemical reduction under alkaline conditions for the tetracycline hydrochloride removal. The prepared materials were characterized comprehensively and fully. Sufficient structural representation analyses confirmed the successful loading of Bi in the form of Bi@BiOx(OH)y complex beads. Based on basic photocatalytic studies, 10% (mass percentage) was found to be the best metal Bi loading. DRS, PL, transient photocurrent and EIS have explored the improvement of the photochemical properties of materials by loading Bi@BiOx(OH)y groups, particularly the improvement of photocatalytic properties by the SPR effect and electron traps. 10%Bi-OxCN exhibited the most suitable particle size of nonagglomerated Bi-metal groups, the largest specific surface area (43.53 m2 g-1), the most adsorption sites and the most significant photocurrent (8.694 × 10-2 mA cm-2) (7.78 times that of OxCN). This indicated that 10%Bi-OxCN had good adsorption capacity and excellent light response capability. In addition, 10%Bi-OxCN showed the best tetracycline hydrochloride removal efficiency (96.0%), with ∙O2- as the main active substance and 1O2 as the second most important substance made of ∙O2- and h+. The excellent photocatalytic effect and good reusability were fundamentally dependent on the modification of OxCN by Bi@BiOx(OH)y groups to produce a large number of active substances (including the separation efficiency of electron-hole pairs and the generation efficiency of ∙O2- and 1O2). These advantages are all related to the high specific surface area, a large number of active sites, narrow bandgap width, Bi-SPR effect, and BiOx(OH)y electron trap caused by successful loading of Bi groups.
科研通智能强力驱动
Strongly Powered by AbleSci AI